
Lecture 05: Bayesian Inference Lecture # 2

• Improper priors: Prior p(θ) is called proper if
∫
p(θ)dθ < ∞, and is called improper if∫

p(θ)dθ = ∞. Proper priors guarantee proper posterior distributions, improper priors do
not (need to verify on case-by-case basis). Safer to use proper priors.

• Multivariate priors: derive (µ, σ2). Let Xi ∼ N(µ, σ2) then:

p(µ, σ2|x) ∝ p(µ, σ2)
n∏
i=1

p(xi|µ, σ2)

∝ p(µ, σ2)(σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}

Conjugate prior:

µ|σ2 ∼ N
(
µ,

1

κ0
σ2
)
, σ2 ∼ Inv-χ2(ν0, σ

2
0).

For details on the Scaled-Inverse-χ2 distribution see footnote1.
The posterior is then seen to be (ex: prove this):

µ|σ2, x ∼ N
( κ0
σ2µ0 + n

σ2 x̄
κ0
σ2 + n

σ2

,
1

κ0
σ2 + n

σ2

)
σ2|x ∼ Inv-χ2

(
ν0 + n,

1

ν0 + n

[
ν0σ

2
0 + (n− 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)

])
,

where s2 = 1
n−1

∑n
i=1(xi − x̄)2 and x̄ = 1

n

∑n
i=1 xi. See Chapter 3 of Gelman et al for more

details.

• Multivariate normal: derive (µ,Σ). Let xi ∼ N(µ,Σ) then:

p(µ,Σ|x) ∝ p(µ,Σ)
n∏
i=1

p(xi|µ,Σ)

∝ p(µ,Σ)‖Σ‖−n/2 exp

{
−1

2

n∑
i=1

(xi − µ)Σ−1(xi − µ)

}

∝ p(µ,Σ)‖Σ‖−n/2 exp

{
−1

2
tr

(
Σ−1

n∑
i=1

(xi − µ)(xi − µ)T

)}
1Note: The density of a Scaled-Inverse-χ2 random variable is given by:

p(x|ν, σ2) =
(ν/2)ν/2

Γ(ν/2)
(σ2)ν/2x−( ν

2
+1)e−

νσ2

2x , x > 0, ν > 0, σ2 > 0. (1)

Mean/Variance/Mode:

E
[
X|ν, σ2] =

ν

ν − 2
σ2, Var

(
X|ν, σ2) =

2ν2

(ν − 2)2(ν − 4)
σ4, Mode =

ν

ν + 2
σ2.
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Conjugate prior:

µ|Σ ∼ N
(
µ0,

1

κ0
Σ

)
, Σ ∼ Inv-Wishart(ν0,Λ

−1
0 ).

For details on the Inverse-Wishart distribution see footnote2. The posterior is then seen to
be:

µ|Σ, x ∼ N
(
µn,

1

κn
Σ

)
, Σ|x ∼ Inv-Wishart(νn,Λ

−1
n ),

where:

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
x̄,

κn = κ0 + n

νn = ν0 + n

Λn = Λ0 + S +
κ0n

κ0 + n
(x̄− µ0)(x̄− µ0)T .

See Chapter 3 of Gelman et al for more details.

• Monte Carlo Integration: Let π(x) be the pdf/pmf of a random variable X. To compute

θ = Eπ [X] =

∫
xπ(x)dx,

we can:

– Sample x1, x2, . . . , xm from π

– Estimate θ using:

θ̂ =
1

m

m∑
i=1

xi.

As m→∞, θ̂ converges to θ. More generally, to estimate Eπ [g(X)] we can use:

1

m

m∑
i=1

g(xi).

Example: Let Z ∼ N(0, 1). Compute (a) E [Z], (b) E
[
eZ
]
.

• Gibbs sampling: Algorithm for two components:

1. Start at (x
(0)
1 , x

(0)
2 ) and set t = 0.

2. Sample x
(t+1)
1 from p(x1|x(t)2 )

2Note: The density of (a k × k) Inverse-Wishart random variable is given by:

p(W |ν, S−1) =

(
2νk/2πk(k−1)/4

k∏
i=1

Γ(
ν + 1− i

2
)

)−1

|S|ν/2|W |−(ν+k+1)/2 exp

{
−1

2
tr
(
W−1S

)}
.

Mean: E [W ] = (ν − k − 1)−1S.
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3. Sample x
(t+1)
2 from p(x2|x(t+1)

1 )

4. Increment t 7→ t+ 1 and return to 2.

We obtain samples:

x_1 x_2

iter_001 0.0 0.0

iter_002 3.1 2.3

iter_003 2.4 1.9

...

In the long-tun these samples represent a sample from the joint distribution p(x1, x2).

Application:

Gibbs sampler for (µ,Σ):

1. Set (µ(0),Σ(0)) and t = 0.

2. Sample µ(t+1) from p(µ|Σ(t), y)

3. Sample Σ(t+1) from p(Σ|µ(t+1), y)

General Gibbs Sampling Algorithm:

1. Start at (x
(0)
1 , x

(0)
2 , . . . , x

(0
p )) and set t = 0.

2. Sample x
(t+1)
1 from p(x1|x(t)2 , . . . , x

(t)
p )

3. Sample x
(t+1)
2 from p(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p )

4. (. . . Sample x
(t+1)
k from p(xk|x

(t+1)
1:(k−1), x

(t)
(k+1):p) . . . )

5. Sample x
(t+1)
p from p(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 )

6. Increment t 7→ t+ 1 and return to 2.

• Markov Chains

– Stochastic process for which future states are conditionally independent of past states
given the current state.

– Sequence (x(0), x(1), x(2), . . .)

– Markov: p(x(t+1)|x(t), x(t−1), . . . , x(0)) = p(x(t+1)|x(t))
– Jumps are stochastic and governed by a transition kernel

– For discrete state spaces (with k states) this is controlled by: p(x(t+1) = j|x(t) = i) = pij
and the k × k matrix P = (pij))

– For continuous state spaces we have a transition density:

p(x(t+1) ∈ A|x(t) = u) = p(u,A)

– Important definitions:

∗ Irreducibility: It is possible to reach every state from every other state (in a finite
number of moves)
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∗ Aperiodicity: Starting from state i, returns to i can occur at irregular times (e.g.,
not only after 2, 4, 6, 8, . . . moves)

∗ Transience: A state i is said to be transient if, starting at i, there is a non-zero
probability of never returning to i

∗ Recurrence: A state i is recurrent if it is not transient.

∗ Positive recurrence: A recurrent state i is said to be positive recurrent if it is recur-
rent and its expected return time is finite (otherwise it is null recurrent)

∗ Ergodicity: Aperiodicity + positive recurrence.

∗ A Markov Chain is said to be ergodic if all states are ergodic.

– For irreducible ... we have:

– In other words, the long-run time average of the chain converges to a stationary distri-
bution π with:

π = πP (discrete), π(y) =

∫
π(x)p(x, y)dx, ∀ y (continuous)

Ergodicity gives:

P(X(t) = j) −→ πj , as t→∞, ∀ j.

Time-averaged state of chain converges to the stationary distribution (regardless of the
starting point!).

– Can prove that Gibbs sampler has stationary distribution p(x1, . . . , xp).

– In a Bayesian context, suppose we can construct a Markov Chain (e.g., a Gibbs sampler)
to obtain samples from p(θ|y). How can we estimate, say, E [θ|y] (the posterior mean)?
Well:

Theorem: Let θ(1), θ(2), . . . be an ergodic Markov Chain with stationary distribution π
and Eπ [g(θ)] <∞. Then with probability 1:

1

M

M∑
i=1

g(θ(i))→
∫
g(θ)π(θ)dθ = Eπ [g(θ)] .

as M → ∞. This generalizes the earlier Monte Carlo integration result to allow for
dependent samples.

– A Markov Chain with transition density p(x, y) is said to be reversible if:

π(x)p(x, y) = π(y)p(y, x), ∀ x, y.

This is also known as the detailed balance condition. For general transition kernels this
condition ensures that the MC has stationary distribution π.

– The Metropolis-Hastings Algorithm
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