
Lecture 12: Optimization + EM Lecture # 1

• Overview: Today we review basic optimization algorithms and the (vanilla) EM algorithm.
In the rest of the module we will look at more advanced (and more useful) variants of the
EM algorithm.

• First, note that most optimization problems (e.g., finding MLE’s, MAP’s, even CI’s) can be
reduced to finding the root of an equation i.e., solving for:

g(x) = 0.

i.e., to maximize f(x), we can just solve g(x) = f ′(x) = 0. Lets review some basic root-finding
algorithms: bisection, Newton-Raphson and Fisher Scoring.

• Bisection:

– Let g : R 7→ R be a continuous function on [a, b] s.t. g(a) · g(b) < 0.

– Intermediate Value Theorem ⇒ g(x) = 0for some x ∈ (a, b).

– Let l = a, u = b be lower and upper boundaries and fix a precision ε > 0. The algorithm
is as follows:

converged = False

while (!converged):

c := (l + u)/2

if |g(c)| < epsilon:

converged = True #solved

else:

if (g(l) g(c) < 0):

u = c

else: # g(c) x g(u) < 0

l = c

return c

What is this doing graphically? Pro’s and con’s of the algorithm? Interval length?

• Newton-Raphson: Arguably the most famous root-finding/optimization algorithm. Itera-
tive algorithm to solve for x∗ where g(x∗) = 0. Let xt be the current guess for x∗ then update
via:

xt+1 = xt + ηt.

How to select ηt? Taylor expansion of g, if ηt is small:

g(xt+1) = g(xt + ηt) ≈ g(xt) + ηtg
′(xt) +O(η2t )

Solving for g(xt+1) = 0 gives ηt = −g(xt)/g
′(xt) i.e.,

xt+1 = xt −
g(xt)

g′(xt + 1)
.

When maximizing l(θ) this becomes:

xt+1 = xt −
l′(xt)

l′′(xt + 1)
.
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For multivariate g : Rp 7→ Rp we obtain:

~xt+1 = ~xt − [∇g(~xt)]
−1 g(~xt).

e.g., to maximize ` : Rp 7→ R:

~xt+1 = ~xt −
[
∇∇T `(~xt)

]−1∇`(~xt).
Quadratic convergence:

lim
t→∞

|xt+1 − x∗|
|xt − x∗|2

= c <∞.

Pros and cons?

• Scoring: Here we introduce a special modification of Newton-Raphson tailored to statistical
applications. Recall the NR update to maximize `:

θt+1 = θt −
`′(θt)

`′′(θt)
.

The scoring algorithm instead uses:

θt+1 = θt +
`′(θt)

I(θt)
,

where:

I(θt) = E
[
−∂

2`

∂θ2

]
,

is the expected Fisher information. Multivariate version:

θt+1 = θt + I−1(θt)`′(θt)

Pros and cons?

• Examples. . .

• The EM Algorithm: While NR and scoring are useful for many problems, there are many
more where complications arise. For example, the likelihood may involve integrals with no
analytic form e.g., Generalized Linear Mixed Models. Simple nested Binomial GLMM with
Normal random effects:

ηij = xTijβ + zTi γi,

Yij |γi ∼ Bin(nij , g
−1(ηij)),

γi ∼ N
(
0,Σ−1

)
.

What is the likelihood here?

Enter the EM algorithm: designed for maximizing likelihoods (or posterior distributions)
in the presence of ‘missing data’. As we will see, it turns out that ‘missing data’ is defined
very loosely, and in reality there does not need to be any actual ‘data’ that is missing.
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The algorithm is based upon the Q-function, the expected complete-data log-likelihood:

Q(θ|θ(t)) = E
[
l(Ycom|θ)|Yobs, θ = θ(t)

]
(1)

The algorithm works by selecting an initial θ(0), setting t = 0 and iteratively computing:

θ(t+1) = argmax
θ

Q(θ|θ(t))

It can be shown that limt→∞ θ
(t) = θ∗ where `′(θ∗) = 0 i.e., the algorithm converges to a

(possibly local) mode of the log-likelihood function.

– Example: Probit Regression.

– Important implementation notes.

– Proof of convergence.

– Extension to finding MAP estimators.

• The EM alphabet soup. Next few lectures, we will some of these variants...

– ECM, MCEM, MCECM, MCMCEM, MCMCECM, AECM, PXEM, IEM

These variants are designed to address various complications that arise in practice. Some are
designed to improve the rate of convergence, some to improve tractability, some to approxi-
mate quantities that cannot be computed analytically.
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