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Things we will cover today:
Maximum likelihood
Bootstrap
Monte Carlo
Markov Chains

Notice
The seminar this Thursday(Octorber 10th at 4:10pm) will talk about ”Bayes
at Scale” in Statistics department.

Basic Bayes Theorem Data x ∈ X, xj ∈ Xj

Parameter θintheta
Joint pdf P (x1, x2|θ) ”Marginal” pdf for x1 : p(x1) =

∫
X2
p(x1, x2|θ)dx2

”Conditional” pdf for x1|x2 : p(x1|x2, θ) = p(x1,x2|θ)
p(x2|θ) = p(x1,x2|θ)∫

p(x1,x2|θ)dx1

⇒ p(x1, x2|θ) = p(x2|θ)p(x1|x2, θ) = p(x1|θ)p(x2|x1, θ)

Extension for higher dimension: P (x1, x2, ..., xn|θ)
(1) Independent:

∏
p(xi|θ)

(2) General:
∏
p(xi|x[0:i−1], θ) = p(x1|θ)p(x2|x1, θ)...p(xn|xn−1, x2, x1, θ) =

p(x1, x2, ..., xn|θ)
(3) Markov:

∏
p(xi|xi−1, θ)

Example
Suppose Yij|λi ∼ Poisson(eijλi) and are independent for i = 1, ..., k and
j = 1, ..., n.
λi ∼ Gamma(α, β)
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, λi are independent
Observations: {yi}
Unknowns: {λi, α, β}
Model:

∏k
i=1 p(λi|α, β)

∏ni
j=1 p(yij|λi) = p(y, λ|α, β), p(y|α, β) =

∫
p(y, λ|α, β)dλ

Maximum Likelihood(MLE)
An estimate θ̂ is said to be the MLE of θ if
θ̂ = arg maxθ p(y|θ) = arg maxθ p(data|parameter),
i.e. value of the parameter that makes the observed data ”most likely.”
In practice we use θ̂n = arg maxθ Ln(θ), where Ln(θ) = log(y1, · · · , yn|θ).
In this class we will usually use log scale to do the work.

Properties of the MLE

1. Let yi ∼ P (y|θ0), iid. Then θ̂N →P θ0,
That is to say, θ0 is the true value of the parameter and the MLE con-
verges to the true parameter as n→∞.

2. Also
√
n(θ̂n−θ0)→distribution N(0, I−11 (θ)), where I1(θ) = E[− δ2

δθ2
log(p(y|θ))|θ].

Example Suppose y1, · · · , yn ∼iid N(µ, σ2).

P (y1, ...yn|µ, σ2) =
∏n
i=1 p(yi|µ, σ2) =

∏n
i=1

1√
2πσ2

e−
(yi−µ)

2

sσ2 // Take log and
take derivatives:

µ̂ = 1/n
∑

yi = ȳ

σ̂2 = 1/n
∑

(yi − ȳ) =
n− 1

n
S2, whereS2issamplevariance

Suppose my data generate from N(0,1) is µ0 = 0, σ2
0 = 1, then as nisclosetoinfinite,

µiscloseto0andσ2iscloseto1

Confidence Intervals
C1−α(y) is a 100(1 − α)% CI for θ if P (θ ∈ C1−α(y)) = 1 − α, for all

θ ∈ Θ.
i.e Under repeated sampling of datasets, 100(1−α)% of intervals will contain
the true value of the parameter.

Example
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Suppose y1, · · · , yn ∼iid N(µ, σ2). To estimate µ we use µ̂ = ȳ.
A 100(1− α)% CI for µ turns out to be

x̄± tn−1,1−α/2 ∗ σ/
√

(n)

, where tn−1,1−α/2 is the 1 − α/2 quartile of the t-distribution with n − 1
degrees of freedom.

Model Misspecification
We use a density p(y|θ) to model our data, but what happens if the data

comes from a different density, say, g? In other words, suppose your model
is wrong and the data comes from a different density. And it happens all the
time.
How will MLE perform in this case?

1. θ̂n → θ∗, where θ∗ generates the member of p(y|θ) that is ”closest” to g.

2.
√
n(θ̂n−θ∗)→d N(0, J−11 (θ∗)V1(θ

∗)J−11 (θ∗)), where V1(θ) = V ar[ δ
δθ
log(p(y|θ)‖θ]

and J1(θ) = E[− δ2

δθ2
log(p(y|θ)|θ]

If the model is true, then V1(θ) = J1(θ) and we get the usual result.
If the model is wrong, we have extra J terms on either side, which leads to
the so-called ”sandwich estimate for the variance of θ̂”.
IMPORTANT: Note the subscript 1 above. these values are based on per
unit information.
Vn(θ) = var[ δ

δθ
logP (y1, ..., yn|θ)|θ], If not iid, we have to diverge on Vn(θ).

The Bootstrap
The bootstrap is a general method used to obtain standard errors for

parameter estimates.
Let Y1, · · · , Yn ∼iid F , (pdf f , cdf F ).
We want to estimate some population quantity θ = T (F ) (for example if
we are interested in the mean, T would be integration). We are going to
use the plug-in estimate: θ̂n = T (F̂N) = t(Xn), where F̂n is the empirical
distribution (cdf) of the data Xn = (Y1, · · · , Yn), which places mass 1/n on
each of the data points.
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For example, we are interested in the population median θ = F−1(0.5), then
the plug-in estimate is the sample median θ̂n = F̂−1n (0.5). Once we have an
estimate θ̂n, we want to estimate its distribution, or specifically its standard
error.

Idea: Resample from the empirical distribution to approximate the dis-
tribution of θ̂n under the true model.

Algorithm

for(b in 1:B){

#Resamle dataset with replacement size n

bdata<-sample(data,replace=TRUE)

#Compute estimate of $\theta$ for the bootstrap dataset

est_vec[b] <- f(bdata)

NOTE: The size of the bootstrap data set is the same as the size of the
original dataset

To estimate the standard error of θ̂, we use the standard deviation of the
bootstrap estimates θ̂∗b : b = 1, · · · , n.
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