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Things we will cover today:
Maximum likelihood
Bootstrap
Monte Carlo
Markov Chains

Notice
The seminar this Thursday(Octorber 10th at 4:10pm) will talk about ” Bayes
at Scale” in Statistics department.

Basic Bayes Theorem Data z € X, z; € X;
Parameter fintheta
Joint pdf P(zy,72|¢)) "Marginal” pdf for x, : p(z1) = [, p(x1, 22|0)dw;

” T4l 9 . _ p(an,xg\@) _ P($17$2|6’)
Conditional” pdf for x1|zy : p(x1|z2,0) = Peal®) = Tplarscalf)dor

= p(r1, 22|0) = p(22|0)p(71|22,0) = p(21]0)p(22|21,0)

Extension for higher dimension: P(z1, xs, ..., 2,|0)
(1) Independent: [T p(x;|6)
(2) General: [Ip(zilzi-1),0) = p(1]0)p(z2|z1,0)...p(T0|T01, T2, ¥1,0) =
p(z1, 9, ..., ,|0)

(3) Markov: [Ip(zi|z;—1,6)

Example
Suppose Y;;|\; ~ Poisson(e;;A;) and are independent for ¢ = 1,...,k and
7=1,..n.

Ai ~ Gamma(aq, 3)



, \; are independent
Observations: {y;}
Unknowns: {\;, o, 5}

Model: TTE; p(Aila, 8) Ty p(yij|A) = p(y, A, B), p(yla, B) = [ p(y, Ao, B)dA

Maximum Likelihood(MLE)
An estimate 6 is said to be the MLE of 0 if
0 = arg maxy p(y|0) = arg maxy p(data|parameter),
i.e. value of the parameter that makes the observed data ”most likely.”
In practice we use 6, = argmaxg L, (0), where L, (0) = log(yy, -, ya|0).
In this class we will usually use log scale to do the work.

Properties of the MLE

1. Let y; ~ P(y|6y), iid. Then 6y —p 6,
That is to say, 6y is the true value of the parameter and the MLE con-
verges to the true parameter as n — oo.

2. Also \/ﬁ(HAn—HO) —distribution N (0, I71(0)), where I () = E[—%log(p(y[G))W].

Example Suppose y1, -+, Yn ~iia N(pt,0%).
7(1/2"#)2

Py, ynlp, 0%) = Ty p(yilp, 0®) = Ty 5mme +* // Take log and

take derivatives:
f=1/n Z Yi =19

. -1
o2=1/nd (yi—y) = n - S? whereS?issamplevariance

Suppose my data generate from N(0,1) is i = 0, 02 = 1, then as nisclosetoin finite,
pisclosetoOando?isclosetol

Confidence Intervals

C1=(y) is a 100(1 — )% CI for @ if P() € C'7%(y)) = 1 — a, for all
0eco.
i.e Under repeated sampling of datasets, 100(1 — )% of intervals will contain
the true value of the parameter.

Example



Suppose Y1, -+, Yn ~ia N (@, 0%). To estimate pu we use ji = j.
A 100(1 — a)% CI for p turns out to be

T+ tn—l,l—a/? * a/ﬂn)

, where t,_11_4/2 is the 1 — a/2 quartile of the ¢-distribution with n — 1
degrees of freedom.

Model Misspecification

We use a density p(y|f) to model our data, but what happens if the data
comes from a different density, say, g7 In other words, suppose your model
is wrong and the data comes from a different density. And it happens all the
time.
How will MLE perform in this case?

1. 6, — 0%, where 6* generates the member of p(y|@) that is " closest” to g.

2. /0, —0") —4 N(0, 7 (0%)VA(6%).J; " (6%)), where V1 (0) = Var[-51og(p(y]0)]|6]
and J;(0) = E[—2log(p(y]0)|0]

If the model is true, then V;(0) = J;(f) and we get the usual result.

If the model is wrong, we have extra J terms on either side, which leads to
the so-called ”"sandwich estimate for the variance of 7.

IMPORTANT: Note the subscript 1 above. these values are based on per
unit information.

Vo (0) = var[SlogP(yi, ..., y,|0)|0], If not iid, we have to diverge on V,(6).

The Bootstrap

The bootstrap is a general method used to obtain standard errors for
parameter estimates.
Let Yi,"',Yn ~iid F, (pdf f, cdf F)
We want to estimate some population quantity § = T(F) (for example if
we are interested in the mean, 7" would be integration). We are going to
use the plug-in estimate: 6, = T(Fy) = t(X,), where F), is the empirical
distribution (cdf) of the data X,, = (Y1,---,Y,), which places mass 1/n on
each of the data points.



For example, we are interested in the population median § = F~1(0.5), then
the plug-in estimate is the sample median 6, = Fn_ 1(0.5). Once we have an
estimate én, we want to estimate its distribution, or specifically its standard
error.

Idea: Resample from the empirical distribution to approximate the dis-
tribution of én under the true model.

Algorithm

for(b in 1:B){
#Resamle dataset with replacement size n
bdata<-sample(data,replace=TRUE)
#Compute estimate of $\theta$ for the bootstrap dataset
est_vec[b] <- f(bdata)

NOTE: The size of the bootstrap data set is the same as the size of the

original dataset .
To estimate the standard error of #, we use the standard deviation of the

bootstrap estimates ég cb=1,---,n.



