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Announcement: The Statistics Seminar this week (Thursday at 4:10PM) is ”Bayes at
scale.” We’re about to start our Bayesian unit, so this is good timing.

The goal of this lecture is to cover the following four topics:

Maximum likelihood
Bootstrap
Monte Carlo
Markov Chains

Preliminaries

Data x ∈ X, xj ∈ Xj

Parameter θ
”Marginal” pdf for x1 : p(x1) =

∫
X2
p(x1, x2|θ)dx2

”Conditional” pdf for x1|x2, θ : p(x1|x2, θ) = p(x1,x2|θ)
p(x2|θ) = p(x1,x2|θ)∫

p(x1,x2|θ)dx1
So we have p(x1, x2|θ) = p(x2|θ)p(x1|x2, θ) = p(x1|θ)p(x2|x1, θ)

In this class we will need to be familiar with marginalizing and conditioning, and to know
when it is appropriate. In higher dimensions, we have:

Independent:
∏
p(xi|θ)

General:
∏
p(xi|x[0:i−1], θ) = p(x1|θ)p(x2|x1, θ)p(x3|x2, x1, θ) = p(x1, x2, x3|θ)

Markov:
∏
p(xi|xi−1, θ)

Example

Suppose Yij|λi ∼ Poi(eijλi) and are independent for i = 1, · · · , k and j = 1, · · · , n.
λi ∼ Gamma(α, β)
Observations: {yi}
Unknowns: {λi, α, β}
Model:

∏k
i=1 p(λi|α, β)

∏n
j=1 p(yij|λi) = p(y, λ|α, β), p(y|α, β) =

∫
p(y, λ|α, β)dλ
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Maximum Likelihood

Bayesian statistics is based on maximum likelihood estimation, so it is important to under-
stand the concepts involved here. An estimate θ̂ is said to be the MLE of θ if
θ̂ = arg max p(y|θ) = arg maxθ p(data|parameter), i.e. value of the parameter that makes
the observed data ”most likely.” In practice we use θ̂n = arg maxθ Ln(θ), where Ln(θ) =
log(y1, · · · , yn|θ). In this class we will almost always work on the log scale in this class.

Useful Properties of the MLE

1. Let yi ∼ P (y|θ0), independent. Then θ̂N →P θ0, i.e. θ0 is the true value of the param-
eter and the MLE converges to the true parameter as n→∞.

2. Also
√
n(θ̂n − θ0)→d N(0, I−11 (θ)), where I1(θ) = E[− δ2

δθ2
log(p(y|θ))].

Confidence Intervals

We say C1−α(y) is a 100(1−α)% CI for θ if P (θ ∈ C1−α(y)) = 1−α for all θ ∈ Θ, i.e. under
repeated sampling of datasets, 100(1 − α)% of intervals will contain the true value of the
parameter.

Example

Suppose y1, · · · , yn ∼ N(µ, σ2), independent. To estimate µ we use µ̂ = ȳ.
A 100(1− α)% CI for µ turns out to be x̄± tn−1,1−α/2 ∗ σ/

√
(n), where tn−1,1−α/2 is the α/2

quartile of the t-distribution with n− 1 degrees of freedom.

Model Misspecification

We use a density p(y|θ) to model our data, but what happens if the data comes from a
different density, say, g? In other words, suppose your model is wrong and the data comes
from a different density. How often does this happen? All the time.
What does the MLE converge to?

1. θ̂n → θ∗, where θ∗ generates the member of p(y|θ) that is ”closest” to g.

2.
√
n(θ̂n − θ∗) →d N(0, J−1(θ∗)V (θ∗)J−1(θ∗)), where V (θ) = V ar[ δ

δθ
log(p(y|θ)‖θ] and

J(θ) = E[ δ
2

δθ2
log(p(y|θ)|θ]

If the model is true, then V1(θ) = J1(θ) and we get the usual result. When the model is
wrong, we have extra J terms on either side, which leads to the so-called ”sandwich estimate
for the variance of θ̂
IMPORTANT: Note the subscript 1 above. these values are based on a single observation.
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The Bootstrap

The bootstrap is a very general method used to obtain standard errors for parameter es-
timates. Let Y1, · · · , Yn ∼ F , independent (pdf f , cdf F ). We want to estimate some
population quantity θ = T (F ) (for example if we are interested in the mean, T would be
integration). We are going to use the plug-in estimate: θ̂n = T (F̂N) = t(Xn), where F̂n is the
empirical distribution (cdf) of the data Xn = (Y1, · · · , Yn), which places mass 1/n on each of
the data points. If for example, we are interested in the population median θ = F−1(0.5) =,
then the plug-in estimate is the sample median θ̂n = F̂−1n (0.5). Once we have an estimate
θ̂n, we want to estimate its distribution, or specifically its standard error.

Idea: Resample from the empirical distribution to approximate the distribution of θ̂n under
the true model.

R Pseudocode

n<-250

mu<-c(-1,-0.5)

’bootstrap’<-function(data,f,B=200){

#assumes scalar estimates

#and that data can be sampled fom

est_vec <- rep(NA,B)

for(b in 1:B){

#Resamle dataset:

x_star <-sample(data,replace=TRUE)

#Compute estimate

est_vec[b] <- f(x_star)

}

#Return bootstrap distribution

return(Est_vec)

}

#Perform bootstrap:

breps=bootstrap(data=x,f=mean,B=500)

#Plot:

hist(breps)

#estimate SE:

sd(breps)

NOTE: The size of the bootstrap data set is the same as the size of the original dataset

To estimate the standard error of θ̂, we use the standard deviation of the bootstrap estimates
θ̂∗b : b = 1, · · · , n.

Some sample Python code is available on the website. The code concerns functions used for
random number sampling.
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