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1 Intro to Bayesian Inference

• In Bayesian models, parameters are not fixed but treated as random vari-
ables that follow a probability distribution

• Definition: Prior Distribution (π(θ)) - the distribution of the param-
eter (θ) assumed, before observing any data.

• A goal of Bayesian inference is to make inference about θ (the parameter).

• The 100(1-α)% confidence interval from a classical stand point is one de-
fined for a fixed parameter under repeated sampling. In other words, we
could make statements like ”the 100(1-α)% confidence interval is expected
to contain our true parameter θ, 100(1-α)% of the time under repeated
sampling from the model”. For any given interval, however, the true pa-
rameter is either in the interval or it isn’t, since the parameter is fixed.
In the classical case, therefore, under repeated sampling, the parameter is
fixed, and the CI is random.

• Bayesian Inference is based on the idea that the parameter itself (or our
state of knowledge about it) is random (or described by a probability
distribution) and allows us to make probability statements about θ. For
example, we can make statements like: ‘there is a (1-α)% chance that
theta is between 0.12 and 0.85’.

• The idea is that with the likelihood function p(y|θ), the probability of our
data y given the parameter θ, we would like to find π(θ|y), the probability
of the parameter θ given our data y

• Definition: Posterior Distribution (π(θ|y)): the conditional distri-
bution of θ given the observed data y

π(θ|y) =
p(y|θ)π(θ)∫
p(y|θ)π(θ)dθ

(1)
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2 Prior Distribution

• A main topic in Bayesian inference is the determination of the prior dis-
tribution. How do you know what the prior distribution of θ should be?

• There are three main methods for determining which distributions are
appropriate for θ.

1. Reference Priors (Jose Bernado, Jim Berger 1̃970s)

– Idea: Maximize the ”‘distance”’ (e.g. the K-L divergence) be-
tween the prior distribution and the posterior distribution

– This method puts the most ”‘impact”’ to the data. Because the
prior is ’far away’ it is not informative, and therefore most of the
information is contained in the data.

– Excellent rule but tricky to derive for complex models

2. Probability Matching Prior (Welch/Peers 1956)

– Idea: select a prior distribution such that the posterior distribu-
tion allows the construction of intervals with frequentist coverage
(i.e. confidence intervals).

– Nice in theory but is not practical and can be hard to derive.

3. Invariance

– Idea: construct a rule such that the prior distributions con-
structed in different parametizations are consistent.

– The most famous invariant prior is Jeffreys Prior,

π(θ) ∝ |I(θ)| 12 , (2)

– where I(θ) is the Fisher Information and this is the square root
of the determinant

3 Jeffreys Prior

• The idea behind the invariance property of Jeffreys Prior is that (for ex-
ample) take θ = eµ. You could derive the JP for µ and then transform it
accordingly and you would obtain the results as if you were to find the JP
on θ directly.

• Example
yi|θ ∼ind Bin(ni, θ), (i = 1, ...m)

– Therefore the likelihood function for all m observations is:

p(y|θ) =

m∏
i=1

(
ni
yi

)
θyi(1− θ)ni−yi

∝ θ
∑
yi(1− θ)

∑
ni−yi
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– And the Posterior Distribution is

π(θ|y) ∝ π(θ)p(y|θ) = π(θ)θ
∑
yi(1− θ)

∑
ni−yi (3)

If you do the calculations, you find that

I(θ) =

∑
ni

θ(1− θ)

and Jefferey’s Prior is

π(θ) ∝ θ− 1
2 (1− θ)− 1

2

Which changes 3 to

π(θ|y) ∝ θ
∑
yi− 1

2 (1− θ)
∑

(ni−yi)− 1
2 (4)

– We recognize this as a Beta(α, β) distribution with Beta parameters
α =

∑
yi+

1
2 and β =

∑
(ni − yi)+ 1

2 and we use the property that for
any probability density f(x),

∫
f(x) = 1, to find the proportionality

constant. We need ∫
π(θ|y) = 1,

Recall that if X ∼ Beta(α, β), for x ∈ (0, 1)

p(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

Therefore 4 can be expressed as

π(θ|y) ∝ θ(
∑
yi+

1
2 )−1(1− θ)(

∑
(ni−yi)+ 1

2 )−1 (5)

And we can obtain our proportionality constant

Γ(α+ β)

Γ(α)Γ(β)

– Note that Jefferey’s Prior, π(θ) ∼ Beta( 1
2 ,

1
2 )

– When the prior and posterior distribution are in the same family, we
call the prior a Conjugate Prior

– Some examples of Conjugate/Likelihoods are Normal/Normal, Bino-
mial/Beta.

– Lets continue. We now have our posterior distribution

θ|y ∼ Beta
(

1

2
+
∑

yi,
1

2
+
∑

(ni − yi)
)

Suppose we get data with # of successes and # of failures, respec-
tively,

∑
yi = 10,

∑
(ni − yi) = 20, our posterior distribution (now

that we have observed this data) is

θ|y ∼ Beta(10.5, 20.5)
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– Now we need a point estimate

∗ posterior mean

∗ posterior median

∗ posterior mode (usually this is great to use but can be hard to
compute in practice)

We also need an uncertainty quantification/interval or ”‘Credible In-
terval”’ (in Bayesian Context a Posterior Interval is called a Credible
Interval).

S1−α(y) is defined to be the 100(1− α)% Credible Interval. If∫
S1−α(y)

π(θ|y) = (1− α) (6)

4 Credible Intervals

• There are two main types of Intervals

1. Central Interval

– this is defined by the α
2 , 1−

α
2 percentiles of the posterior

2. HPD, Highest Posterior Density Interval

– This is an interval S such that:

S = {θ : π(θ) > π(θ′),

∫
S

π(θ|y) = (1− α)} (7)

∀ θ ∈ S and θ′ /∈ S
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