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Bayesian Inference

• Based on Bayes’ Theorem.

• Different from classical inference by regarding parameters as random variables.

Introduction

Interpretation of a confidence interval: under repeated sampling, 100(1− α)% of confidence

intervals would contain θ.

 We would prefer to say things like “there is a 95% chance that θ is between 0.1 and 0.9”.

Idea: The likelihood function p(y|θ) can be interpreted as p(data|parameters).
Goal: We are interested to know p(θ|y) i.e., p(parameter|data).

Here θ becomes a random variable!

Using Bayes’ Theorem:

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

. Therefore, to be able to get p(θ|y), we need

(1) likelihood p(y|θ)

(2) ”prior” p(θ)

Once we have these, basic probability rules allow us to get

(3) ”posterior” p(θ|y).

Prior Distribution

A prior distribution p(θ) encodes an analyst’s beliefs about what values of θ are plausible

before seeing any data.

Example: Undergraduate GPA of STA 250 students. Since most students enrolled in STA

1



250 are graduate students, it is reasonable to believe that they have higher undergraduate

GPA on average. Assuming that σ2 is known, we can use a truncated normal distribution

centered around say 3.6 to model µ.

How to specify priors?

Note: There is no unique/correct prior!

Two (or Three) Camps

(1) Subjective Bayes. Prior encodes the belief of the analyst.

(2) Objective Bayes. Priors are determined by formal rule/criteria.

(3) Pragmatic Bayes. In real world, we just do whatever works!

Formal Rules

(1) Reference priors (Bernardo, Berger. ∼ 1970)

Idea: Maximize the “distance” (e.g. KullbackCLeibler divergence) between the prior

and the posterior. These priors have excellent properties, but it can be tricky to derive

them for complex models.

(2) Probability matching priors (Welch&Peers. ∼ 1956)

Idea: Select a prior such that posterior distribution allows the construction of inter-

vals with frequentist coverage (i.e., confidence intervals). Nice theory exists, but not

practical (computation-intensive)!

(3) Invariance

Idea: Construct a rule such that the prior distributions constructed in different parametriza-

tions are consistent.

E.g., For prior µ where µ ∼ N(0, 1), if we reparametrize it to θ = eµ, prior on theta is

transformed accordingly.

The most famous invariance prior is Jefferey’s Prior where p(θ) ∝ ‖I(θ)‖1/2. I(θ) is

the Fisher information and in multivariate case, ‖I(θ)‖1/2 is the square root of the

determinant of I(θ). We are able to obtain equivalent priors after transformation.

Considering the following two recipes:

Recipe 1 Derive Jeffrey’s prior for θ.

Recipe 2 Derive Jeffrey’s prior for µ, then transform via θ = eµ and find the induced

prior in θ.

Using Jeffrey’s prior, both recipes give the same answer.
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Example: yi|θ
ind.∼ Bin(ni, θ), i = 1, ...,m. Need prior on θ.

(Aside: Recall p(θ|y) = p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ) since p(y) does not involve θ.)

p(y|θ) =
n∏
i=1

(
ni
yi

)
θyi(1− θ)ni−yi ∝ θ

∑
yi(1− θ)

∑
(ni−yi).

Posterior: p(θ|y) ∝ p(θ)θ
∑
yi(1− θ)

∑
(ni−yi).

It turns out that I(θ) =
∑
ni

θ(1−θ) .

⇒ Jeffrey’s prior: p(θ) ∝ I(θ)1/2 ∝ θ−1/2(1− θ)−1/2.

⇒ Posterior: p(θ|y) ∝ θ(
∑
yi)−1/2(1− θ)

∑
(ni−yi)−1/2.

We need
∫
p(θ|y)dθ = 1.

Recall that if X ∼ Beta(a, b), then p(x) = Γ(a+b)
Γ(a)Γ(b)

xa−1(1− x)b−1I{0<x<1}.

We have p(θ|y) ∝ θ(
∑
yi+1/2)−1(1− θ)[

∑
(ni−yi)+1/2]−1.

⇒ θ|y ∼ Beta(
∑
yi + 1/2,

∑
(ni − yi) + 1/2).

Jeffrey’s prior is actually a Beta(1/2, 1/2). It turns out that is we use a Beta(a, b) as the

prior, we get a posterior θ|y ∼ Beta(a+
∑
yi, b+

∑
(ni − yi)).

We call a prior a conjugate prior if the posterior distribution remains in the same family

as the prior.

E.g., Prior for θ was Beta, posterior was also Beta.

We have θ|y ∼ Beta(
∑
yi + 1/2,

∑
(ni − yi) + 1/2). Suppose I have data

∑
yi = 10,∑

(ni − yi) = 20.

⇒ Posterior is θ|y ∼ Beta(10.5, 20.5). The plot of p(θ|y) is shown below.
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Credibel Interval

To get a point estimate for θ, we can use:

(1) Posterior mean.

(2) Posterior median.

(3) posterior mode (can be hard to compute in practice).

We also need an uncertainty quantification/interval. In the Bayesian context, a posterior

interval is known as a credible interval.

S1−α(y) is defined to be a 100(1− α)% credible interval for θ if
∫
S1−α(y)

p(θ|y)dθ = 1− α.

A central credible interval takes the α/2 and (1− α/2) percentiles of the posterior.

A highest posterior density (HPD) interval is an interval S such that

S = {θ : p(θ) > p(θ′) ∀θ ∈ S, θ′ /∈ S,
∫
S

p(θ|y)dθ = 1− α}.

An illustration of these two intervals can be found at http://www.bayesian-inference.

com/credible.

Program Demonstration

The R code for binomial coverage simulation can be found at https://github.com/STA250/

Stuff/blob/master/Lecture_Code/Bayes/binom_coverage_sim.R.

As we can see from the output of the simulation, if we use Jeffrey’s prior, the frequentist

coverage of Bayesian interval is reasonably good.

4

http://www.bayesian-inference.com/credible
http://www.bayesian-inference.com/credible
https://github.com/STA250/Stuff/blob/master/Lecture_Code/Bayes/binom_coverage_sim.R
https://github.com/STA250/Stuff/blob/master/Lecture_Code/Bayes/binom_coverage_sim.R

