STA 250 Lecture Notes

10/9/2013
Recorded by Jeremy Werner

Announcements

- Approximately when Homework 1 is assigned, a tutorial on correctly syncing to github will be provided.

Bayesian Inference

Interpretation of confidence interval: Under repeated sampling, $100(1-\alpha) \%$ of confidence intervals would contain θ. We would prefer to say things like "there is a 95% chance that θ is between .1 and .9, ," for example.

Idea:

$$
\begin{array}{rll}
\underline{\text { Likelihood }} & P(y \mid \theta) & {[P(\text { data } \mid \text { parameters })]} \\
\underline{\text { Goal }} & P(\theta \mid y) & {[P(\text { parameters } \mid \text { data })]}
\end{array}
$$

and $P(\theta \mid y)=\frac{P(y \mid \theta) P(\theta)}{P(y)}=\frac{P(y \mid \theta) P(\theta)}{\int P(y \mid \theta) P(\theta) d \theta}$
To be able to get $P(\theta \mid y)$ we need:
(1) Likelihood $P(y \mid \theta)$
(2) Prior $P(\theta)$
(3) Posterior $P(\theta \mid y)$ which follows from using basic probability rules once we have (1) and (2)

A prior distribution $P(\theta)$ encodes an analyst's beliefs about what values of θ are plausible before seeing any data. In other words, the prior is "How you expect θ to be distributed before you see any data"

Example: Undergraduate GPA of STA 250 students
$\overline{\text { Model } y_{i}} \mid \theta \sim \operatorname{Truncated} \operatorname{Normal}\left(\mu, \sigma^{2},[0,4]\right)$
Assume σ^{2} is known, a possible prior distribution could look like the graph below.

How can a prior be specified? First, it is necessary to note that no prior is unique or correct! With that being said, there are two (three) major camps of belief/schools of thought.
(1) Subjective Bayes \Rightarrow Prior encodes the belief of the analyst
(2) Objective Bayes \Rightarrow Priors are determined by formal rules/criteria
(3) $\underline{\text { Pragmatic Bayes }} \Rightarrow$ Do whatever works!)

Formal Rules

(1) Reference Priors (Bernardo, Berger ~1979)

- Idea: Maximize the "distance" (e.g. KL divergence) between the prior and posterior.
- Excellent properties, can be tricky to derive for complex models
(2) Probability Matching Prior (Welch, Peers ~1963)
- Idea: Select a prior such that the posterior distribution allows the construction of intervals with frequentist coverage (i.e. confidence intervals)
- Nice theory, not practical!
(3) Invariance
- Idea: Construct a rule such that the prior distributions constructed in different parametrizations are consistent (e.g. prior $\mu: \quad \mu \sim N(0,1) \quad$ Reparametrize to $\theta=e^{\mu}$
\Rightarrow Prior on θ is transformed accordingly)
- The most famous invariant prior is Jeffreys Prior $P(\theta) \propto\|I(\theta)\|^{1 / 2} \quad$ where $I(\theta)$ is the Fisher Information and $\|\cdot\|$ is the determinant of the matrix for multivariate forms.

Recipe 1: Derive Jeffreys Prior for θ
Recipe 2: Derive Jeffreys Prior μ, then transform via $\theta=e^{\mu}$ and find the induced prior on θ using Jeffreys Prior. Both recipes give the same answer.

Example: $y_{i} \mid \theta \sim \operatorname{Bin}\left(n_{i}, \theta\right) \quad i=1, \ldots, m$
Need prior on $\theta \ldots \quad P(\vec{y} \mid \theta)=\prod_{i=1}^{m}\left(\begin{array}{l}n_{i} \\ y_{i}\end{array} \theta^{y_{i}}(1-\theta)^{n_{i}-y_{i}} \propto \theta^{\sum y_{i}}(1-\theta)^{\sum\left(n_{i}-y_{i}\right)}\right.$
(Aside: Recall that $\frac{P(\theta) P(y \mid \theta)}{P(y)} \propto P(\theta) P(y \mid \theta)$)
Posterior: $P(\theta \mid y) \propto P(\theta) \theta^{\sum y_{i}}(1-\theta)^{\sum\left(n_{i}-y_{i}\right)}$
(Aside: Get the fisher with a calculator or taking the long way with derivatives, etc...)
It turns out that $I(\theta)=\frac{\sum n_{i}}{\theta(1-\theta)} \Rightarrow$ Jeffreys Prior $=P(\theta) \propto I(\theta)^{1 / 2} \propto \theta^{-1 / 2}(1-\theta)^{-1 / 2}$
\Rightarrow Posterior $P(\theta \mid y) \propto \theta^{\sum y_{i}-1 / 2}(1-\theta)^{\sum\left(n_{i}-y_{i}\right)-1 / 2}$

We need $\int P(\theta \mid y) d \theta=1$
(Recall: if $x \sim \operatorname{Beta}(a, b)$ then $P(x)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1} I_{\{0 \leq x \leq 1\}}$)

We have $P(\theta \mid y) \propto \theta^{\left(\sum y_{i}+1 / 2\right)-1}(1-\theta)^{\left(\sum\left(n_{i}-y_{i}\right)+1 / 2\right)-1} \Rightarrow \theta \sim \operatorname{Beta}\left(1 / 2+\sum y_{i}, 1 / 2+\sum\left(n_{i}-y_{i}\right)\right)$
Note: Jeffreys Prior is actually a $\operatorname{Beta}(1 / 2,1 / 2)$ in this case. It turns out that if we use a $\operatorname{Beta}(a, b)$ prior, we get a posterior of the form $\theta \mid y \sim \operatorname{Beta}\left(a+\sum y_{i}, b+\sum\left(n_{i}-y_{i}\right)\right)$

We call a prior a conjugate prior if the posterior distribution remains in the same family as the prior. (e.g. the prior for $\overline{\theta \text { was Beta, posterior was also Beta) }}$

Note: Jeffreys priors are not always conjugate priors

Suppose we have $\theta \mid y \sim \operatorname{Beta}\left(1 / 2+\sum y_{i}, 1 / 2+\sum\left(n_{i}-y_{i}\right)\right)$ and we have data $\sum y_{i}=10 \quad \sum\left(n_{i}-y_{i}\right)=20$ which are the total successes and total failures, respectively.
\Rightarrow Posterior is $\theta \mid y \sim \operatorname{Beta}(10.5,20.5)$ which is shown in Figure 1.

Figure 1: $\operatorname{Beta}(10.5,20.5)$
To get a point estimate for θ we can use either the
(1) Posterior mean
(2) Posterior median
(3) Posterior mode (can be hard to compute in practice)

We also need an uncertainty quantification/interval, in the Bayesian context a posterior interval is known as the credible interval.
$S^{1-\alpha}(y)$ is defined to be a $100(1-\alpha) \%$ credible interval for θ if $\int_{S^{1-\alpha}(y)} P(\theta \mid y) d \theta=1-\alpha$
A central credible interval takes the $\alpha / 2$ and $1-\alpha / 2$ percentiles of the posterior.
A highest posterior density (HPD) interval is an interval S such that

$$
S=\left\{\theta: P(\theta)>P\left(\theta^{\prime}\right) \forall \theta \in S, \theta^{\prime} \notin S, \int_{S} P(\theta \mid y) d \theta=1-\alpha\right\}
$$

Code Example

View binom_coverage_sim. R in the GitHub repo for some illustrations from this lecture. Also, the function binom.test () can be helpful in comparison. The results should be similar. In the end, under certain conditions, Jeffreys Prior returns essentially the same results as Maximum Likelihood will.

