
STA 250 Lecture Notes
10/9/2013

Recorded by Jeremy Werner

Announcements

• Approximately when Homework 1 is assigned, a tutorial on correctly syncing to github will be
provided.

Bayesian Inference

Interpretation of confidence interval: Under repeated sampling, 100(1−α)% of confidence intervals would
contain θ. We would prefer to say things like “there is a 95% chance that θ is between .1 and .9,” for
example.

Idea:

Likelihood P (y|θ) [P (data|parameters)]

Goal P (θ|y) [P (parameters|data)]

and P (θ|y) = P (y|θ)P (θ)
P (y) = P (y|θ)P (θ)∫

P (y|θ)P (θ)dθ

To be able to get P (θ|y) we need:

1 Likelihood P (y|θ)

2 Prior P (θ)

3 Posterior P (θ|y) which follows from using basic probability rules once we have 1 and 2

A prior distribution P (θ) encodes an analyst’s beliefs about what values of θ are plausible before seeing
any data. In other words, the prior is “How you expect θ to be distributed before you see any data”

Example: Undergraduate GPA of STA 250 students
Model yi|θ ∼ Truncated Normal(µ, σ2, [0, 4])
Assume σ2 is known, a possible prior distribution could look like the graph below.
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How can a prior be specified? First, it is necessary to note that no prior is unique or correct! With that
being said, there are two (three) major camps of belief/schools of thought.

1 Subjective Bayes ⇒ Prior encodes the belief of the analyst

2 Objective Bayes ⇒ Priors are determined by formal rules/criteria

3
(

Pragmatic Bayes ⇒ Do whatever works!
)

Formal Rules

1 Reference Priors (Bernardo, Berger ∼ 1979)

• Idea: Maximize the “distance” (e.g. KL divergence) between the prior and posterior.

– Excellent properties, can be tricky to derive for complex models

2 Probability Matching Prior (Welch, Peers ∼ 1963)

• Idea: Select a prior such that the posterior distribution allows the construction of intervals
with frequentist coverage (i.e. confidence intervals)

– Nice theory, not practical!

3 Invariance

• Idea: Construct a rule such that the prior distributions constructed in different parametriza-
tions are consistent

(
e.g. prior µ : µ ∼ N(0, 1) Reparametrize to θ = eµ

⇒ Prior on θ is transformed accordingly
)

– The most famous invariant prior is Jeffreys Prior P (θ) ∝ ||I(θ)||1/2 where I(θ) is the
Fisher Information and || · || is the determinant of the matrix for multivariate forms.

Recipe 1: Derive Jeffreys Prior for θ
Recipe 2: Derive Jeffreys Prior µ, then transform via θ = eµ and find the induced prior on θ using
Jeffreys Prior. Both recipes give the same answer.

Example: yi|θ ∼ Bin(ni, θ) i = 1, ...,m

Need prior on θ... P (~y|θ) =
m∏
i=1

(
ni
yi

)
θyi(1− θ)ni−yi ∝ θ

∑
yi(1− θ)

∑
(ni−yi)

(
Aside: Recall that P (θ)P (y|θ)

P (y) ∝ P (θ)P (y|θ)
)

Posterior: P (θ|y) ∝ P (θ)θ
∑
yi(1− θ)

∑
(ni−yi)

(
Aside: Get the fisher with a calculator or taking the long way with derivatives, etc...

)
It turns out that I(θ) =

∑
ni

θ(1−θ) ⇒ Jeffreys Prior = P (θ) ∝ I(θ)1/2 ∝ θ−1/2(1− θ)−1/2

⇒ Posterior P (θ|y) ∝ θ
∑
yi−1/2(1− θ)

∑
(ni−yi)−1/2

We need
∫
P (θ|y)dθ = 1(

Recall: if x ∼ Beta(a, b) then P (x) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1I{0≤x≤1}

)
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We have P (θ|y) ∝ θ(
∑
yi+1/2)−1(1− θ)(

∑
(ni−yi)+1/2)−1 ⇒ θ ∼ Beta(1/2 +

∑
yi, 1/2 +

∑
(ni − yi))

Note: Jeffreys Prior is actually a Beta(1/2, 1/2) in this case. It turns out that if we use a Beta(a, b)
prior, we get a posterior of the form θ|y ∼ Beta(a+

∑
yi, b+

∑
(ni − yi))

We call a prior a conjugate prior if the posterior distribution remains in the same family as the prior.
(e.g. the prior for θ was Beta, posterior was also Beta)

Note: Jeffreys priors are not always conjugate priors

Suppose we have θ|y ∼ Beta(1/2+
∑
yi, 1/2+

∑
(ni−yi)) and we have data

∑
yi = 10

∑
(ni−yi) = 20

which are the total successes and total failures, respectively.
⇒ Posterior is θ|y ∼ Beta(10.5, 20.5) which is shown in Figure 1.
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Figure 1: Beta(10.5, 20.5)

To get a point estimate for θ we can use either the

1 Posterior mean

2 Posterior median

3 Posterior mode (can be hard to compute in practice)

We also need an uncertainty quantification/interval, in the Bayesian context a posterior interval is known
as the credible interval.

S1−α(y) is defined to be a 100(1− α)% credible interval for θ if
∫

S1−α(y)

P (θ|y)dθ = 1− α

A central credible interval takes the α/2 and 1− α/2 percentiles of the posterior.

A highest posterior density (HPD) interval is an interval S such that

S =

θ : P (θ) > P (θ′) ∀θ ∈ S, θ′ /∈ S,
∫
S

P (θ|y)dθ = 1− α


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Code Example

View binom coverage sim.R in the GitHub repo for some illustrations from this lecture. Also, the
function binom.test() can be helpful in comparison. The results should be similar. In the end, under
certain conditions, Jeffreys Prior returns essentially the same results as Maximum Likelihood will.
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