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1 Proper/improper prior

• A prior p(θ) is called a proper prior if
∫
p(θ)dθ <∞

• It is called an improper prior if
∫
p(θ)dθ =∞

• If we use a proper prior for θ, then the posterior for θ is also proper.

• If we use an improper prior for θ then the posterior may or may not be proper! (So,

one needs to prove that the posterior is proper while using an improper prior for θ )

• Small notes:

1. Since we mainly deal with posterior distribution (e.g. we want to know what is

the posterior mean to give a point estimate for θ) and we need prior only to derive

the posterior, it is OK to use improper prior, but NOT OK to have an improper

posterior.

2. Prof. Baines’ recommendation: Use proper prior. Trying to show that the poste-

rior is proper, while using an improper prior, can be messy!
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2 More on priors

• Example: Suppose, Xi|µ, σ2 i.i.d.∼ N(µ, σ2), then

p(µ, σ2|x) ∝ p(µ, σ2)Πn
i=1p(xi|µ, σ2)

∝ p(µ, σ2)(σ2)−
n
2 exp{− 1

2σ2

n∑
i=1

(xi − µ)2}

• How to specify prior on (µ, σ2)

1. Recipe 1(Independence): We could assume µ, σ2 apriori independent so that

p(µ, σ2) = p(µ)p(σ2)

2. Recipe 2(Conditional): Or we could specify:

p(µ, σ2) = p(σ2)p(µ|σ2)

• For this example, it turns out that the conjugate priors are:

µ|σ2 ∼ N(µ0,
1

κ0

σ2)

σ2 ∼ Inv − χ2(ν0, σ
2
0)

Then one can show that the posteriors are as follow:

µ|σ2,x ∼ N(µn,
1

κn
σ2)

σ2|x ∼ Inv − χ2(νn, σ
2
n)

where, νn = ν0 + n

κn = κ0 + n

µn =
κ0
σ2µ0 + n

σ2 x̄
κ0
σ2 + n

σ2

σ2
n =

1
κ0
σ2 + n

σ2

[ Aside - Inverse Chi-square(Inverse Gamma): If X ∼ χ2
(ν) then, νS2

X
∼ Inv −

χ2(ν, S2) and the pdf is given by:

p(x|ν, S2) = (ν/2)(ν/2)

Γ(ν/2)
(σ2)1/2x−(ν/2+1)e

νσ2

2x ]

• Thus we can have the joint posterior of (µ, σ2|x) as given by:
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p(µ, σ2|x) = p(σ2|x)p(µ|σ2,x)

Joint posterior is particularly useful when we are interested in the joint structure

between the set of parameters, e.g. if we want to know the correlation structure of the

parameters or want to construct joint credible set for the set of parameters.

• To make inference about µ we use the marginal posterior, which can be obtained as

follows:

p(µ|x) =
∫
p(µ, σ2|x)dσ2

Unless we are particularly interested in the joint structure of the parameters, marginal

posterior is what we require frequently.

• Note: If Xi|µ,Σ ∼ N(µ,Σ); where, xi,µ ∈ Rp, Σ is p×p positive definite symmetric

matrix; then the conjugate prior for (µ,Σ) is given by:

µ|Σ ∼ N(µ0,
1

κ0

Σ)

Σ ∼ Inv-Wishart(ν0,Λ0)

3 Computational difficulties

• Problem: We have:

µ|σ2,x ∼ N(µn,
1

κn
σ2)

σ2|x ∼ Inv − χ2(νn, σ
2
n)

How to compute the marginal posterior of µ|x? If we try:

p(µ|x) =
∫
p(σ2|x)p(µ|σ2,x)dσ2= too much Algebra

• Way-out: We sample from p(σ2|x) and p(µ|σ2,x)! Thus, if we sample (µ, σ2) from

joint posterior p(µ, σ2|x) then from the resulting sample we can have sample of µ

which is from marginal posterior p(µ|x). Now e.g. for the posterior mean of µ, a good

approximation would be the sample mean computed from the sample of µ.

• Outside of very simple setting it is usually much easier to sample from a posterior

than to compute it analytically. For sampling we need an algorithm of sampling and

computing efficiency to carry out the algorithm.
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4 Monte Carlo Integration:

• Let X be a random variable with p.d.f. π(x). Suppose, we want to compute:

θ = Eπ[X] =
∫
xπ(x)dx

If we sample X1, X2, ...Xn
i.i.d.∼ π, then we can use:

θ̂ = 1
m

∑m
i=1 xi

to approximate θ. It can be shown: limm→∞
1
m

∑m
i=1 xi = θ

• Example 1: Suppose we sample from a N(0, 1) distribution and we compute the sample

mean, using the following R-code:

mean(rnorm(n = m,mean = 0, sd = 1))

then we will see that the value → 0 as m→∞

• More generally, to compute Eπ[g(X)] we can use:

θ̂ = 1
m

∑m
i=1 g(xi)

Here also it can be shown: θ̂ → θ as m→∞ for all nice functions g.

• Example 2: Z ∼ N(0, 1), compute E(ez+cos(z)). R-code to find the estimate:

z = rnorm(10000);mean(exp(z + cos(z)))

5 Gibbs Sampling

• Idea: Sample from the posterior distribution and then use the sample to compute

quantities of interest such as posterior means, posterior s.d., posterior credible intervals

etc.

• Problem: How to sample from the posterior p(θ|x)

• Toy-example:

– Goal: To sample from p(x1, x2).

Suppose, we can sample from p(x1|x2) and from p(x2|x1)

(It can be shown that even if we are sampling from the conditional distributions,

the resulting sample turns out to be one drawn from the joint distribution.)
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– Algorithm [Gibbs Sampler]: To obtain sample from p(x1, x2);

1. Select starting state (x
(0)
1 , x

(0)
2 ), set t = 0.

2. Sample x
(t+1)
1 from p(x1|x(t)

2 )

3. Sample x
(t+1)
2 from p(x2|x(t+1)

1 )

4. Set t = t+ 1, go to 2.

• Example: Suppose,

(
x1

x2

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 −ρσ1σ2

−ρσ1σ2 σ2
2

))
then to sample from

the joint distribution we can use the following conditional distributions:

x1|x2 ∼ N(...) and x2|x1 ∼ N(...).

• In general, to sample from p(x1, x2, ...xp)

1. Select starting state (x
(0)
1 , x

(0)
2 , ..., x

(0)
p ), set t = 0.

2. Sample x
(t+1)
1 from p(x1|x(t)

2 , x
(t)
3 , ..., x

(t)
p )

3. Sample x
(t+1)
2 from p(x2|x(t+1)

1 , x
(t)
3 , ..., x

(t)
p ) .......

(k+1). Sample x
(t+1)
k from p(xk|x(t+1)

1 , x
(t+1)
2 , ..., x

(t+1)
k−1 , x

(t)
k+1, ...x

(t)
p )......

(p+1). Sample x
(t+1)
p from p(xp|x(t+1)

1 , x
(t+1)
2 , ..., x

(t+1)
p−1 )

Set t = t+ 1 and go to 2.

• If p(x1, x2, ...xp) are highly correlated Gibbs sampling takes much more time to converge

than when they are nearly independent.

6 Markov Chain:

A Markov Chain is a stochastic process with the property that future states are independent

of the past states given the current state.

• Sequence: (x(1), x(2), x(3), x(4), ........)

• Markov Chain: P (x(t+1)|x(1)......x(t)) = P (x(t+1)|x(t))

• Markov chains are controlled by their transition kernel/density.

• Suppose x takes k possible values:
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Pij = P (X(t+1) = j|x(t) = i) for all i, j

give the transition probabilities.

• Consider the following Markov chain which has three states. The transition probabili-

ties are described in the diagram.

stoch.jpeg

• For the above example, the transition matrix would be:


0.1 0.5 0.4

0 0 1

0.5 0.5 0


• Markov chains are described by their transition matrices.

• If x has a continuous state space (e.g. x ∈ R) then the markov chain is described by

the transition kernel/density:

P (X(t+1) ∈ A|x(t) ∈ U) = P(U,A) for all i, j

Important Definitions

• Irreducibility: A markov chain is irreducible if it is possible to reach every state from

every other state in a finite no. of moves.

• Aperiodicity: Starting at state i, you don’t have to return to state i at regular period.

• Transience: A state i is said to be transient if starting at state i, there is a non-zero

probability of never returning to state i.

• Recurrence: A state i is said to be recurrent if it is not transient.

• Positive Recurrence: A recurrent state i is positive recurrent if it’s expected return

time is finite.

• Ergodicity: Aperiodicity + Positive Recurrence

• For an ergodic markov chain, the long-run average of the chain converges to a stationary

distribution.
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P (X(t) = i)
t→∞→ πi

• For stationary distribution:

π = πD, π(y) =
∫
π(x)p(x, y)dx

7


