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Metropolis-within-Gibbs

Allows you to sample from high-dimensional distributions using a sequence

of lower dimensional distributions. Generalizes Gibbs sampler in two ways:

1. If we can’t sample directly/exactly then can use MH.

2. Sample sub-blocks of parameters, not necessarily full conditionals, i.e.

p(θ1, θ2, φ|y)

→ sample p(θ1, θ2|φ,y) exactly

→ sample p(φ|θ1, θ2,y) using MH.

Idea for hw

2 strategies:

1. Sample from p(β|y) using MH & a multivariate proposal for β.

2. For j = 1, ..., p, sample βj from p(βj |β[−j],y) [no closed form ⇒ use

MH].

When to use non-symmetric proposals? θ has compact support, then pro-

posal can respect the boundaries.

Example Xi
iid∼ Pois(λ), i = 1, ..., n, prior λ ∼ tν1{(0,∞)}

Use MH, proposal θ∗ ∼ TN(θ(t), v2, [0,∞))⇒ no longer symmetric.

Checking your MCMC code

For one dataset, how to know if we reach convergence?

→ “by eye” using traceplots

→ use effective sample size to gauge roughly “how well” converged

→ other diagnostics: Gelman-Rubin (multiple chains), Heidelberger, Geveke(?)
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We can use simulation studies to check everything is working.

Idea:

1. Simulate θ(j) from the prior p(θ)

2. Simulate a dataset y(j) from the model p(y|θ(j))

3. Sample from posterior for dataset y(j)

4. Find 100(1-α)% central credible interval for θ from dataset y(j)

5. Record Y/N whether the interval contained θ(j)

6. Check roughly 100(1-α)% of intervals contained their specific θ(j)

Why does this work?∫
p(θ)

∫
1{θ ∈ S1−α(y)}p(y|θ)dydθ

=

∫ ∫
1{θ ∈ S1−α(y)}p(θ)p(y|θ)dydθ

=

∫ ∫
1{θ ∈ S1−α(y)}p(θ|y)p(y)dθdy

=

∫
p(y)

[∫
1{θ ∈ S1−α(y)}p(θ|y)dθ

]
dy

= 1− α

Bayes:
∫
p(θ)

∫
1{θ ∈ S1−α(y)}p(y|θ)dydθ = 1− α

Frequentist:
∫
1{θ ∈ C1−α(y)}p(y|θ)dy = 1− α ∀ θ

Posterior Predictive Checking

Validation simulation checks you can sample from the posterior under your

model. It doesn’t tell you if your model is a good fit to the data.

Idea: Having fit your model to the data, you know roughly what θ is, so

if you simulate from p(y|θ) the simulated data should look “similar” to the

real data.

Formally: p(ỹ|y) =
∫
p(ỹ, θ|y)dθ =

∫
p(ỹ|θ)p(θ|y)dθ
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Recipe:

• Sample θ(t) from the posterior p(θ|y)

• For each θ(t), sample a new dataset from p(y|θ(t))

• We now have M predictive datasets & one real dataset

• We can take univariate summary statistic of each dataset & the real

dataset & compare

Could use min, mean, median, max.

Posterior Predictive p-value

2 min{P(T (y∗) > T (y)),P(T (y∗) < T (y))}
In practice, p = 2 min(fraction to left, fraction to right). Heuristically, p

small (< .05) ⇒ model is NOT a good fit to the data.
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