STA 250 Lecture Notes(Oct. 21)

Olivia Lee

Metropolis-Within-Gibbs

- Allows you to sample from a high-dimensional distribution using a sequence of lower dimensional distributions.
- Generalizes Gibbs sampler in two ways
 - 1. If we can't sample directly/exactly, then we can use MH.
 - 2. Sample sub-blocks of parameters, not necessary full conditionals. (ie) $P(\theta_1, \theta_2, \phi | \overrightarrow{y})$ \rightarrow sample $P(\theta_1, \theta_2 | \phi, \overrightarrow{y})$ (exactly) \rightarrow sample $P(\phi | \theta_1, \theta_2 \overrightarrow{y})$ (using MH)

Idea of Homework:

Two Strategies

- 1. Sample from $P(\vec{\beta} | \vec{y})$ using MH and a multivariate proposal for $\vec{\beta}$
- 2. For j = 1, ..., p sample from $P(\beta_j | \beta_{[-j]}, \overrightarrow{y})$
- \star Recommend to do both in homework!

Q:When to use non-symmetric proposals?

A:When θ has compact support then proposal can respect the boundaries.

Ex: $X_i \sim Posi(\lambda)i = 1, ..., n$. Prior $\lambda \sim t_v I_{\{(0,\infty)\}}$ Use MH, proposal $\theta^* \sim TN(\theta^{(t)}, v^2, [0,\infty)) \Rightarrow$ No longer symmetric!

Checking your MCMC code

For one dataset, how to know we reach convergence?

- 1. By eye, using traceplots.
- 2. Use effective sample size to gauge roughly "how well" converged
- 3. Other diagnostics : run multiple Markov Chains then compare if they are the same(Gelmen-Rubin)
- \star If pass these tests, it doesn't necessary mean convergence. But if fail to pass, no converge.

Fortunately, we can use simulation studies to check if everything is working!

Idea:

1. Simulation $\theta_{(i)}$ from the prior $P(\theta)$

- 2. Simulate a dataset $\overrightarrow{y}_{(j)}$ from the model $P(y|\theta_{(j)})$
- 3. Sample from posterior for dataset $\overrightarrow{y}_{(j)}$
- 4. Find $100(1-\alpha)\%$ central credible interval for θ
- 5. Record yes or no that the interval contained $\theta_{(j)}$
- 6. Check roughly $100(1-\alpha)\%$ of intervals contained their specific $\theta_{(j)}$

Why does this work?

$$\begin{split} &\int P(\theta) \int I_{\{\theta \in S^{1-\alpha}(\overrightarrow{y})\}} P(\overrightarrow{y}|\theta) dy d\theta \\ &= \int \int I_{\{\theta \in S^{1-\alpha}(\overrightarrow{y})\}} P(\theta) P(\overrightarrow{y}|\theta) dy d\theta \\ &= \int P(y) [\int I_{\{\theta \in S^{1-\alpha}(\overrightarrow{y})\}} P(\overrightarrow{y}|\theta) d\theta] dy \\ &= (1-\alpha) \int P(y) dy \\ &= 1-\alpha \end{split}$$

$\begin{array}{l} \begin{array}{l} \textbf{Comparison} \\ \underline{\text{Bayes:}} & \int P(\theta) \int I_{\{\theta \in S^{1-\alpha}(\overrightarrow{y})\}} P(\overrightarrow{y} \mid \theta) dy d\theta = 1 - \alpha \\ \overline{\text{Frequentist:}} & \int I_{\{\theta \in C^{1-\alpha}(\overrightarrow{y})\}} P(y \mid \theta) dy = 1 - \alpha \quad \forall \theta \end{array}$

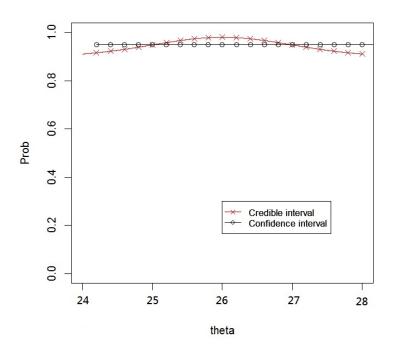


Figure 1: 95% Credoble Interval vs95% Confidence Interval

Posterior Predictive Checking

• Validation simulation checks you can sample from the posterior under your model. But it doesn't tell you if your model is a good fit to the data.

Idea:

Having fit your model to the data, you know roughly what θ is, so if you simulate from $P(y|\theta)$ the simulated data should look "similar" to the real data.

Formally: $P(\widetilde{y}|\overrightarrow{y}) = \int P(\widetilde{y},\theta|\overrightarrow{y})d\theta = \int P(\widetilde{y}|\theta)P(\theta|\overrightarrow{y})d\theta$

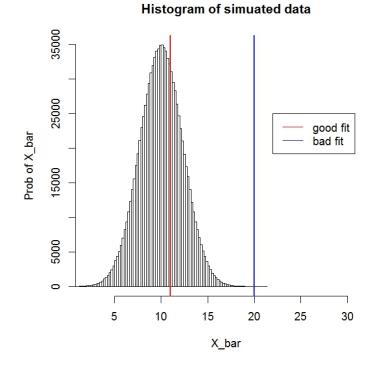
Recipe:

•Sample $\theta^{(t)}$ from the posterior $P(\theta | \vec{y})$

•For each $\theta^{(t)}$, sample a new dataset from $P(\overrightarrow{y}|\theta^{(t)})$

•We now have is m predictive datasets and 1 real dataset.

•We can take univariate summary statistics of each dataset and compare to the real dataset



 \star Could use mean, median, min, max.

 \star Compare the posterior predictive p-value.

Posterior Predictive P-value:

 $p = 2 * min\{P(T(y^*) > T(\overrightarrow{y})), P(T(y^*) < T(\overrightarrow{y}))\}$

Heuristically, if p is small then your model is not a good fit of the data.