
STA 250 Lecture 8: Big Data

Minjie Fan

October 25, 2013

Contents

1 Introduction to Big Data 1

1.1 What is ”big” data? . 1

1.2 Scaling to ”Big” Data . 2

1.3 Q & A . 2

1.4 Limitation of R . 2

1.5 What then for ”big” data? . 2

2 Example: ”Big” Logistic Regression 3

2.1 R Package: Bigmemory . 3

2.2 Working with the data: . 4

2.3 Code your own ”bigmemory” in R/Python . 4

2.4 SE Estimates for β̂ . 4

2.5 The Bag of Little Bootstraps . 5

1 Introduction to Big Data

1.1 What is ”big” data?

It depends on what you are trying to do with it!

• Large n and not large p (our focus).

• Large p and not large n.

• Large n and large p.

• Complex (non-rectangular) ”big” data.

1

1.2 Scaling to ”Big” Data

Naive approaches designed for traditional amounts of data do not tyically scale to ”big” data. How

to scale to big data then? Usually some combination of:

• Assuming that the data has inherently lower-dimensional structure

– Sparsity

– Conditional independence

• Fast algorithms

– Parallelization

– Typically linear time algorithms or better

• Methodology that avoids the need to fit the ”full” data

– Consensus Monte Carlo

– Bag of Little Bootstraps (our focus)

1.3 Q & A

• For highly correlated data, we had better treat them jointly, e.g. Gibbs sampler.

1.4 Limitation of R

There are limitations on the types of data that R handles well. Since all data being manipulated

by R are resident in memory, and several copies of the data can be created during execution of a

function, R is not well suited to extremely large data sets. Data objects that are more than a (few)

hundred megabytes in size can cause R to run out of memory, particularly on a 32-bit operating

system.

1.5 What then for ”big” data?

We can’t read in data to memory, so what alternatives are there?

• File-backed data structures (i.e., data remains stored on disk, not memory) (our focus)

– Examples: bigmemory (and other big* packages). See: http://www.bigmemory.org/

– Pros: Easy to use. Simple to understand, any language can mimic functionality.

2

– Cons: Requires ”nice” data, burden on programmer to scale algorithms (parallelization

etc.), doesn’t scale as easily to data that cannot fit on disk.

• Databases (just a little bit)

– Relational Databases (e.g., SQL): Rigid structure, relational algebra operations (union,

intersection, difference etc.).

– NoSQL Databases (e.g., CouchDB, MongoDB): Less structure than a relational database,

less functionality, but typically faster data retrieval.

• Distributed File Systems (our focus)

– Example: Hadoop Distributed File System (HDFS). Data remains on disk, but DFS

provides a full ecosystem for scaling to data across multiple machines.

– Pros: Scales to essentially arbitrarily large amounts of data (just add more machines).

– Cons: Harder to interact with data. More restrictive progamming paradigm (MapRe-

duce).

2 Example: ”Big” Logistic Regression

On Gauss I have created an uncompressed 255Gb file containing data for fitting a ”big” logistic

regression model (6m observations, 3k covariates).

Goal: Find standard errors for the parameter estimates of the logistic regression

model.

To do this:

• Figure out how to work with that much data using bigmemory (or Python equivalent)

• Figure out how to obtain standard errors for parameter estimates in a scalable manner

(Algorithm).

2.1 R Package: Bigmemory

Function 1: read.big.matrix

Description: write the contents of a big.matrix to a suitably-formatted ASCII file.

Usage:

3

1 goo <− read . b ig . matrix (i n f i l e , type=”double ” , header=FALSE,

backingpath=datapath ,

3 b a c k i n g f i l e=backingf i l ename ,

d e s c r i p t o r f i l e=de s c r i p t o r f i l e n ame)

Function 2: attach.big.matrix

Description: attach the big.matrix

Usage:

1 attach . b ig . matrix (dget (d e s c r i p t o r f i l e) , backingpath=datapath)

See details: http://cran.r-project.org/web/packages/bigmemory/bigmemory.pdf

2.2 Working with the data:

• We can fit ”big regressions” with biglm.big.matrix or bigglm.big.matrix.

• We can still do the basics (they just might take a while!).

2.3 Code your own ”bigmemory” in R/Python

We actually won’t use any of the real functionality of the bigmemory suite of packages. All we

really need is the ability to read arbitrary lines from a file without loading the full file into memory.

• load the file

• Read line-by-line until the desired line is reached

• Extract the data from the line

2.4 SE Estimates for β̂

We can use the bootstrap talked during boot camp. For the logistic regression model, we have both

X’s and y’s. When we resample points, we resample both xi and yi. This is sometimes called the

paired bootstrap.

For the logistic regression problem, using B = 500:

4

1. Let F̂ denote the empirical probability distribution of the data (i.e., placing mass 1/6000000

at each of the 6000000 data points)

2. Take a random sample of size 6000000 from F̂ (with replacement). Call this a ”bootstrap

dataset”, X∗
j for j = 1, · · · , 500.

3. For each of the 500 bootstrap datasets, compute the estimate β̂∗
j .

4. Use the standard deviation of {β̂∗
1 , · · · , β̂∗

500} to approximate SD(β̂).

2.5 The Bag of Little Bootstraps

For estimating SD(θ̂):

1. Let F̂ denote the empirical probability distribution of the data (i.e., placing mass 1/n at each

of the n data points)

2. Select s subsets of size b from the full data (i.e., randomly sample a set of b indices Ij =

{i1, · · · , ib} from {1, 2, · · · , n} without replacement, and repeat s times).

3. For each of the s subsets (j = 1, · · · , s):

• Repeat the following steps r times (k = 1, · · · , r):

(a) Resample a bootstrap dataset X∗
j,k of size n from subset j.

(b) Compute and store the estimator θ̂j,k

• Compute the bootstrap SE of θ̂ based on the r bootstrap datasets for subset j i.e.,

compute:

ξ∗j = SD{θ̂∗j,1, · · · , θ̂∗j,r}.

4. Average the s bootstrap SE’s, ξ∗1 , · · · , ξ∗s to obtain an estimate of SD(θ̂) i.e.,

ŜD(θ̂) =
1

s

s∑
j=1

ξ∗j .

• How to select s? (Number of subsets)

• How to select b? (Size of subsets)

Real key is b. From paper b ≈ n0.6 or b ≈ n0.7 works well.

• How to select r? (Number of bootstrap replicates per subset)

r should be large enough for each of the s subsets. Typically, r > s. For example, if rs = 500,

then r = 50 and s = 10.

5

The gain is that there are only (at most) b unique data points within each bootstrapped dataset.

We have existing approaches to fit this kind of data with the same time cost as if there are b data

points.

6

