STA 250 Lecture 8: Big Data

Minjie Fan

October 25, 2013

Contents

1	Intr	roduction to Big Data	1
	1.1	What is "big" data?	1
	1.2	Scaling to "Big" Data	2
	1.3	Q & A	2
	1.4	Limitation of R	2
	1.5	What then for "big" data?	2
2	Exa	mple: "Big" Logistic Regression	3
2	Exa 2.1	Imple: "Big" Logistic Regression R Package: Bigmemory	3 3
2	Exa 2.1 2.2	Imple: "Big" Logistic Regression R Package: Bigmemory Working with the data:	3 3 4
2	Exa 2.1 2.2 2.3	Imple: "Big" Logistic Regression R Package: Bigmemory	3 3 4 4
2	Exa 2.1 2.2 2.3 2.4	ample: "Big" Logistic Regression R Package: Bigmemory Working with the data: Code your own "bigmemory" in R/Python SE Estimates for $\hat{\beta}$	3 3 4 4 4

1 Introduction to Big Data

1.1 What is "big" data?

It depends on what you are trying to do with it!

- Large *n* and not large *p* (our focus).
- Large p and not large n.
- Large n and large p.
- Complex (non-rectangular) "big" data.

1.2 Scaling to "Big" Data

Naive approaches designed for traditional amounts of data do not tyically scale to "big" data. How to scale to big data then? Usually some combination of:

- Assuming that the data has inherently lower-dimensional structure
 - Sparsity
 - Conditional independence
- Fast algorithms
 - Parallelization
 - Typically linear time algorithms or better
- Methodology that avoids the need to fit the "full" data
 - Consensus Monte Carlo
 - Bag of Little Bootstraps (our focus)

1.3 Q & A

• For highly correlated data, we had better treat them jointly, e.g. Gibbs sampler.

1.4 Limitation of R

There are limitations on the types of data that R handles well. Since all data being manipulated by R are resident in memory, and several copies of the data can be created during execution of a function, R is not well suited to extremely large data sets. Data objects that are more than a (few) hundred megabytes in size can cause R to run out of memory, particularly on a 32-bit operating system.

1.5 What then for "big" data?

We can't read in data to memory, so what alternatives are there?

- File-backed data structures (i.e., data remains stored on disk, not memory) (our focus)
 - Examples: bigmemory (and other big* packages). See: http://www.bigmemory.org/
 - Pros: Easy to use. Simple to understand, any language can mimic functionality.

- Cons: Requires "nice" data, burden on programmer to scale algorithms (parallelization etc.), doesn't scale as easily to data that cannot fit on disk.
- Databases (just a little bit)
 - Relational Databases (e.g., SQL): Rigid structure, relational algebra operations (union, intersection, difference etc.).
 - NoSQL Databases (e.g., CouchDB, MongoDB): Less structure than a relational database, less functionality, but typically faster data retrieval.
- Distributed File Systems (our focus)
 - Example: Hadoop Distributed File System (HDFS). Data remains on disk, but DFS provides a full ecosystem for scaling to data across multiple machines.
 - Pros: Scales to essentially arbitrarily large amounts of data (just add more machines).
 - Cons: Harder to interact with data. More restrictive progamming paradigm (MapReduce).

2 Example: "Big" Logistic Regression

On Gauss I have created an uncompressed 255Gb file containing data for fitting a "big" logistic regression model (6m observations, 3k covariates).

Goal: Find standard errors for the parameter estimates of the logistic regression model.

To do this:

- Figure out how to work with that much data using bigmemory (or Python equivalent)
- Figure out how to obtain standard errors for parameter estimates in a scalable manner (Algorithm).

2.1 R Package: Bigmemory

Function 1: read.big.matrix

Description: write the contents of a big.matrix to a suitably-formatted ASCII file.

Usage:

Function 2: attach.big.matrix

Description: attach the big.matrix

Usage:

attach.big.matrix(dget(descriptorfile),backingpath=datapath)

See details: http://cran.r-project.org/web/packages/bigmemory/bigmemory.pdf

2.2 Working with the data:

- We can fit "big regressions" with biglm.big.matrix or bigglm.big.matrix.
- We can still do the basics (they just might take a while!).

2.3 Code your own "bigmemory" in R/Python

We actually won't use any of the real functionality of the bigmemory suite of packages. All we really need is the ability to read arbitrary lines from a file without loading the full file into memory.

- load the file
- Read line-by-line until the desired line is reached
- Extract the data from the line

2.4 SE Estimates for $\hat{\beta}$

We can use the bootstrap talked during boot camp. For the logistic regression model, we have both X's and y's. When we resample points, we resample both x_i and y_i . This is sometimes called the paired bootstrap.

For the logistic regression problem, using B = 500:

- 1. Let \hat{F} denote the empirical probability distribution of the data (i.e., placing mass 1/6000000 at each of the 6000000 data points)
- 2. Take a random sample of size 6000000 from \hat{F} (with replacement). Call this a "bootstrap dataset", X_j^* for $j = 1, \dots, 500$.
- 3. For each of the 500 bootstrap datasets, compute the estimate $\hat{\beta}_i^*$.
- 4. Use the standard deviation of $\{\hat{\beta}_1^*, \cdots, \hat{\beta}_{500}^*\}$ to approximate $SD(\hat{\beta})$.

2.5 The Bag of Little Bootstraps

For estimating $SD(\hat{\theta})$:

- 1. Let \hat{F} denote the empirical probability distribution of the data (i.e., placing mass 1/n at each of the *n* data points)
- 2. Select s subsets of size b from the full data (i.e., randomly sample a set of b indices $I_j = \{i_1, \dots, i_b\}$ from $\{1, 2, \dots, n\}$ without replacement, and repeat s times).
- 3. For each of the s subsets $(j = 1, \dots, s)$:
 - Repeat the following steps r times $(k = 1, \dots, r)$:
 - (a) Resample a bootstrap dataset $X_{j,k}^*$ of size *n* from subset *j*.
 - (b) Compute and store the estimator $\hat{\theta}_{j,k}$
 - Compute the bootstrap SE of $\hat{\theta}$ based on the r bootstrap datasets for subset j i.e., compute:

$$\xi_j^* = SD\{\hat{\theta}_{j,1}^*, \cdots, \hat{\theta}_{j,r}^*\}.$$

4. Average the s bootstrap SE's, ξ_1^*, \dots, ξ_s^* to obtain an estimate of $SD(\hat{\theta})$ i.e.,

$$\widehat{SD}(\hat{\theta}) = \frac{1}{s} \sum_{j=1}^{s} \xi_j^*.$$

- How to select s? (Number of subsets)
- How to select b? (Size of subsets)

Real key is b. From paper $b \approx n^{0.6}$ or $b \approx n^{0.7}$ works well.

• How to select r? (Number of bootstrap replicates per subset)

r should be large enough for each of the s subsets. Typically, r > s. For example, if rs = 500, then r = 50 and s = 10.

The **gain** is that there are only (at most) b unique data points within each bootstrapped dataset. We have existing approaches to fit this kind of data with the same time cost as if there are b data points.