STA 250 Lecture 8: Big Data
Minjie Fan

October 25, 2013

Contents

1 Introduction to Big Data
1.1 What is "big” data? . . . . . . .. L
1.2 Scaling to "Big” Data . . . . . . . . .
1.3 Q& A . o e
1.4 Limitation of R . . . . . . . . oL
1.5 What then for "big” data? . . . . . . . . . ... .

2 Example: ”Big” Logistic Regression
2.1 R Package: Bigmemory . . . . . . . .. e
2.2 Working with the data: . . . . . .. .. .
2.3 Code your own "bigmemory” in R/Python . . . ... ... ... ... ... ... ..
2.4 SE Estimates for B .....................................
2.5 The Bag of Little Bootstraps . . . . . . . . . . . . ... .. ..

1 Introduction to Big Data

1.1 What is ”big” data?

It depends on what you are trying to do with it!
e Large n and not large p (our focus).
e Large p and not large n.
e Large n and large p.

e Complex (non-rectangular) ”big” data.



1.2 Scaling to ”Big” Data
Naive approaches designed for traditional amounts of data do not tyically scale to ”big” data. How
to scale to big data then? Usually some combination of:
e Assuming that the data has inherently lower-dimensional structure
— Sparsity
— Conditional independence
e Fast algorithms
— Parallelization
— Typically linear time algorithms or better
e Methodology that avoids the need to fit the ”full” data
— Consensus Monte Carlo

— Bag of Little Bootstraps (our focus)

1.3 Q& A

e For highly correlated data, we had better treat them jointly, e.g. Gibbs sampler.

1.4 Limitation of R

There are limitations on the types of data that R handles well. Since all data being manipulated
by R are resident in memory, and several copies of the data can be created during execution of a
function, R is not well suited to extremely large data sets. Data objects that are more than a (few)
hundred megabytes in size can cause R to run out of memory, particularly on a 32-bit operating

system.

1.5 What then for ”big” data?

We can’t read in data to memory, so what alternatives are there?
e File-backed data structures (i.e., data remains stored on disk, not memory) (our focus)
— Examples: bigmemory (and other big* packages). See: http://www.bigmemory.org/

— Pros: Easy to use. Simple to understand, any language can mimic functionality.



— Cons: Requires "nice” data, burden on programmer to scale algorithms (parallelization

etc.), doesn’t scale as easily to data that cannot fit on disk.
e Databases (just a little bit)

— Relational Databases (e.g., SQL): Rigid structure, relational algebra operations (union,

intersection, difference etc.).

— NoSQL Databases (e.g., CouchDB, MongoDB): Less structure than a relational database,

less functionality, but typically faster data retrieval.
e Distributed File Systems (our focus)

— Example: Hadoop Distributed File System (HDFS). Data remains on disk, but DFS

provides a full ecosystem for scaling to data across multiple machines.
— Pros: Scales to essentially arbitrarily large amounts of data (just add more machines).

— Cons: Harder to interact with data. More restrictive progamming paradigm (MapRe-
duce).

2 Example: ”Big” Logistic Regression

On Gauss I have created an uncompressed 255Gb file containing data for fitting a ”big” logistic

regression model (6m observations, 3k covariates).

Goal: Find standard errors for the parameter estimates of the logistic regression

model.
To do this:
e Figure out how to work with that much data using bigmemory (or Python equivalent)

e Figure out how to obtain standard errors for parameter estimates in a scalable manner
(Algorithm).

2.1 R Package: Bigmemory

Function 1: read.big.matrix
Description: write the contents of a big.matrix to a suitably-formatted ASCII file.

Usage:



goo <— read.big.matrix(infile , type="double”, header=FALSE,
backingpath=datapath ,
backingfile=backingfilename ,

descriptorfile=descriptorfilename)

Function 2: attach.big.matrix
Description: attach the big.matrix

Usage:

attach.big.matrix(dget(descriptorfile),backingpath=datapath)

See details: http://cran.r-project.org/web/packages/bigmemory /bigmemory.pdf

2.2 Working with the data:

e We can fit "big regressions” with biglm.big.matrix or bigglm.big.matrix.

e We can still do the basics (they just might take a while!).

2.3 Code your own ”bigmemory” in R/Python
We actually won’t use any of the real functionality of the bigmemory suite of packages. All we
really need is the ability to read arbitrary lines from a file without loading the full file into memory.
e load the file
e Read line-by-line until the desired line is reached

e Extract the data from the line

2.4 SE Estimates for B

We can use the bootstrap talked during boot camp. For the logistic regression model, we have both
X’s and y’s. When we resample points, we resample both x; and y;. This is sometimes called the

paired bootstrap.

For the logistic regression problem, using B = 500:




2.5

. Let F' denote the empirical probability distribution of the data (i.e., placing mass 1/6000000

at each of the 6000000 data points)

. Take a random sample of size 6000000 from F' (with replacement). Call this a "bootstrap

dataset”, X;f for j=1,---,500.

. For each of the 500 bootstrap datasets, compute the estimate Bj

. Use the standard deviation of {3},-- , By} to approximate SD(f).

The Bag of Little Bootstraps

For estimating SD(f):

1.

Let £ denote the empirical probability distribution of the data (i.e., placing mass 1/n at each
of the n data points)

. Select s subsets of size b from the full data (i.e., randomly sample a set of b indices I; =

{i1,-++ ,ip} from {1,2,--- ,n} without replacement, and repeat s times).

. For each of the s subsets (j =1,---,s):

e Repeat the following steps r times (k= 1,--- ,r):
(a) Resample a bootstrap dataset X7y of size n from subset j.
(b) Compute and store the estimator 6;

e Compute the bootstrap SE of 0 based on the r bootstrap datasets for subset j i.e.,
compute:
& =8SD{0:,,---,0;,}.

. Average the s bootstrap SE’s, £, -+ ,&; to obtain an estimate of SD(@) ie.,

. 1S .
SD(0) = — Z &
7j=1
How to select s? (Number of subsets)

How to select b? (Size of subsets)

6 0.7

Real key is b. From paper b =~ n%6 or b ~ n%7 works well.

How to select r? (Number of bootstrap replicates per subset)

r should be large enough for each of the s subsets. Typically, » > s. For example, if rs = 500,
then » = 50 and s = 10.



The gain is that there are only (at most) b unique data points within each bootstrapped dataset.
We have existing approaches to fit this kind of data with the same time cost as if there are b data

points.



