Course Notes, October 28, 2013 — Lecture 9
Eugene Shvarts
Stats 250 — Baines — Fall 2013 — UC Davis

Homework is due

Introducing code-swaps, and the procedure. Link is available at sta250.github.io/Stuff/codeswaps
. Completing a code-swap report is due a week after the homework assignment due date.

Distributed File Systems

Today is more about computing, than about statistics.

When data gets big, it can’t be read directly into R. So, distributed file systems (DFS). There needs
to be a more sophisticated programming framework just to do basic data processing — you need a
model which automatically abstracts out the process of finding the data and synchronizing it.

MapReduce

Two steps to programming for MapReduce: first you map, then you reduce.

e Map: For every data element, a function is applied to that element, and it returns a (key,value)
pair.

e Reduce: For every element with the same key, a function is applied to combine the values.
There could be potentially millions or billions of such pairs! You could take the sum of the
values, or any useful statistic.

Classic example: Count all of the word instances in a string. One method is to treat each
word in the string as its own ‘computer’, or ‘data center’ — each generates a key (corresponding
to the word), and a value (for our current purposes, a 1 suffices). The shorthand here is emit:
(word,1). Next, for the reduce step, we combine all pairs with the same key, and then reduce in
order to return a single value for each distinct key, each of which is a function of the values where
the key is duplicated. Here, our reduce function is just a sum (and so, we simply count the words).
3 instances of ‘Bob’ produces 3 pairs (Bob, 1) (Bob, 1) (Bob, 1), which are reduced to (Bob, 3).

We can implement this in pseudocode; the slides provide the code. A note is that MapReduce
works exclusively (usually?) in strings, and so the values must be parsed to integers to do the
appropriate arithmetic. In this example, because strings can differentiate capitalization (A != a),
‘angry’ is a distinct key from ’Angry’.

Hadoop
Hadoop is written in Java, but the Hadoop Streaming API allows running using any executable or

script. For this course, the most convenient method will probably be scripting in Python, and then
proceeding through the Hadoop Streaming interface.



Python implementation displayed in slides. (The important detail here was the script
used to enter the Python environment)

For MapReduce, the Reduce step is generally more tricky to piece together than the Map step.
Many precautions are taken with regard to excess whitespace, new-line characters, and other possi-
bly subtle formatting issues. Between the Map and Reduce step, the key-value pairs must be sorted
according to the keys! This introduces some complexity, but it generally pales in comparison with
what is required to keep track of all the counts at once in the Reduce step. Because the input
consists of strings, dictionary sorting can be done by whatever our favorite ordering is.

Hadoop itself is an implementation of MapReduce. There are 4 pieces to deal with:

1. Namenode: master server or ‘head node’ which manages filesystem namespace and regulates
access to files by clients.

2. Datanode: One per node in the cluster, which manages storage attached to the nodes that
they run on. So far, very similar to how Gauss is structured.

3. Jobtracker: The headnode for tasks, rather than data. Manages the assignment of Map and
Reduce tasks to the tasktrackers.

4. Tasktracker: Executes tasks, and handles data motion between Maps and Reduces.

Critical to Hadoop (rather, its typical use) is fault tolerance. The Hadoop File System (HDFS)
has redundancy built into it. By default, each file is replicated three times (although this can be
configured). Files are replicated across different datanodes. Large files are ‘chunked’ or ‘sharded’.
Default size is 64 MB, which aids transfer and replication. Uniform small chunk size aids for
converting long run times on one machine into short run times utilizing many machines (think bag
of little bootstraps, consensus Monte Carlo).

Prof. Baines doing a code demo on screen. (running Hadoop on just the one laptop;
using framework but one datanode means no replication, etc.)

In order to run MapReduce using the code, the files need to be loaded into the HDFS first
(once it has been loaded and is running). hadoop fs gives commands to the HDFS. So, hadoop fs
-1s for instance will show you what’s loaded into the HDFS directory. Then, hijinks / technical
difficulties ensue. Okay, we're back.

-copyFromLocal from a local directory to some directory in the HDFS. Once the files are there,
we need to run our routines. Need to use the Hadoop Streaming API, and tell Hadoop where the
Map and Reduce scripts live. When using HSTREAMING, input directory needs to live on the
HDEFS, and the output directory must not exist yet. Hadoop produces a useful local HTML file
which keeps track of the mapping and reducing with lots of diagonstic information and details.
Note: all map steps must be completed before reducing can begin! Hence, optimizing map steps to
avoid bottlenecks can improve performance.

Next, we need to copy our results off of HDFS to the local system; lo and behold, -copyToLocal
does exactly what we think it might. Don’t forget to clean up the HDFS afterwards; code is pro-
vided in slides.

Many algorithms that might benefit from MapReduce require iteration; fortunately Hadoop
supports recursion, but utilizing the Streaming API makes direct chaining difficult. Other tools
have been created that are more effective for doing more detailed statistical analysis — see the
slides. What next? First, *debugging is horrible*. So, *abstraction is wonderful*. We’d rather
work with C than Assembly, and R than C. Links to the following are in the slides.



e Hive: Project structures onto data, and utilize basic SQL-type queries. So, some database
functionality. The part you want to not miss: We will use Hive in the next homework.

e Pig: Framework for easier data analysis using Hadoop. Consists of a higher-level SQL-style
language called “Pig Latin”. Essentially compiles Pig Latin programs into MapReduce tasks.

e Mahout: Scalable library for machine learning using Hadoop. Includes collaborative filtering,
K-means, random forests, etc.

Hadoop is not on Gauss (oh no!). ‘SLURM’ commands which systems do what on Gauss; this
doesn’t mesh with Hadoop’s controller for job management. Local install is fine for debugging; using
just one slow node is relatively pointless though. In comes Amazon Web Services (AWS) to save the

day — these are various tools for doing cloud computing, including a tool called ElasticMapReduce
(EMR).

Prof. Baines discusses ‘Example 2’ from slides for doing numerical computation.
In particular, from ‘Example 3’, for computing in-group variances we see a potential application for
chaining together MapReduce instances. Once you Reduce to compute the means, take the same
keys and change the value for elements x;; of group i to (z;; — 7;)? — then Reducing by summing
and dividing by n; — 1 produces the variance. Point was made of numerical instability that could
be introduced by the repeated additions (but they can’t alternate, as they’re positive?).

Prof. Baines doing a demo for the variance example on the screen. Great! All worked;
not much to say.
See you Wednesday!



