Lecture Note of STA250

Chun-Jui Chen

November 4,2013

1 Python

- 1. For python 2, the most used version is 2.6 and 2.7
- 2. For python 3, the most used version is 3.2 and 3.3
- 3. Python is good for text processing
- 4. Two ways to run python.
i, under the environment of python, use the interactive mode.
ii, Executive python scrip.
- 5. For dealing with string:

$$
\begin{aligned}
& \text { baz="Class" } \\
& \text { bar="Hello" } \\
& \text { foo2=bar+""+baz }
\end{aligned}
$$

- 6. Indentation is important in python:
- 7. python uses zero indexing.
- 8. Format can only be converted by following order: $\operatorname{Str} \rightarrow$ Float \rightarrow int

2 Bayes

Bayes recap: Assume X_{1}, \ldots, X_{n} follow i.i.d. $N\left(\mu, \sigma^{2}\right), \sigma^{2}$ known and $\mu \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$, then

$$
\mu \left\lvert\, \vec{X} \sim N\left(\frac{\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{\sum x_{i}}{\sigma^{2}}}{\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}}\right)\right.
$$

Assume that we have general likelihood $p(\vec{X} \mid \theta)$ and prior $p(\theta)$, thus the posterior will be proportional to:

$$
p(\theta \mid \vec{X}) \propto p(\theta) p(\vec{X} \mid \theta)
$$

If $p(\theta \mid \vec{X})$ has no closed form, use MCMC.

3 Big Data

For big data, applying MCMC directly to the full dataset is not computationally feasible.

Idea: "chunk" full dataset into a series of smaller datasets, sample from posterior of each smaller dataset and combine results.
Assume that $X_{i}^{\prime} s$ are conditionally independent given θ

$$
\prod_{j=1}^{s} p(\theta)^{1 / s} p\left(\vec{X}_{j} \mid \theta\right)
$$

where \vec{X}_{j} is the j -th subset of data and s is the total number of subsets.

where $\sum q_{j}=1, q_{j}>0 \forall j$ and $\cup_{j} \vec{X}_{j}=\vec{X}, \cap_{j} \vec{X}_{j}=\emptyset$. Aside,

$$
\begin{gathered}
\mu \sim N\left(\mu_{0}, \sigma_{0}^{2}\right) \\
p(\mu)^{q_{j}} \propto \exp \left\{-\frac{q_{j}}{2 \sigma_{0}^{2}}\left(\mu-\mu_{0}^{2}\right)\right\}
\end{gathered}
$$

4 Consensus Monte Carlo

Assume that sample $\theta_{j}^{(t)}$ from model m_{j} (i.e. $\left.p_{m_{j}}\left(\theta \mid \vec{X}_{j}\right) \propto \pi(\theta)^{q_{j}} p\left(\vec{X}_{j} \mid \theta\right)\right)$. Combine to

$$
\theta^{(t)}=\frac{\sum_{j=1}^{s} w_{j} \theta_{j}^{(t)}}{\sum_{j=1}^{s} w_{j}}
$$

where $w_{j}>0$ are known weight. For weights, it turns out that a good good choice is: $w_{j}=$ $\operatorname{var}^{-1}\left(\theta \mid \vec{X}_{j}\right)$.

Example. If $X_{1}, \ldots, X_{n} \mid \mu$ follow i.i.d. $N\left(\mu, \sigma^{2}\right)$ and $\mu \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$ and chunk data into $\vec{X}_{j}=$ $\left\{X_{j_{1}}, X_{j_{2}}, \ldots, X_{j_{k}}\right\}$. Where $\left\{j_{1}, \ldots, j_{k}\right\}$ are indices corresponding to the subset j.
Model j :

$$
\begin{gathered}
X_{j_{1}}, X_{j_{2}}, \ldots, X_{j_{k}} \mid \mu \sim_{i i d} N\left(\mu, \sigma^{2}\right) \\
\mu \sim N\left(\mu_{0}, \frac{\sigma_{0}^{2}}{q_{j}}\right)
\end{gathered}
$$

Posterior for Model j :

$$
\mu_{j} \left\lvert\, \vec{X}_{j} \sim N\left(\frac{\frac{q_{j} \mu_{0}}{\sigma_{0}^{2}}+\frac{\sum x_{j}}{\sigma^{2}}}{\frac{q_{j}}{\sigma_{0}^{2}}+\frac{k_{j}}{\sigma^{2}}}, \frac{1}{\frac{q_{j}}{\sigma_{0}^{2}}+\frac{k_{j}}{\sigma^{2}}}\right)\right.
$$

Combine $\mu=\frac{\sum w_{j} \mu_{j}}{\sum w_{j}}, w_{j}=\frac{\varepsilon_{j}}{\sigma_{0}^{2}}+\frac{k_{j}}{\sigma^{2}}$ and $\sum w_{j}=\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}$. Then, we get

$$
\begin{aligned}
\operatorname{Var}(\mu) & =\frac{1}{\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)^{2}} \sum_{j} w_{j}^{2} \operatorname{Var}\left(\mu_{j}\right) \\
& =\frac{1}{\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}} \\
E(\mu)= & \frac{\sum_{j} w_{j} E\left[\mu_{j}\right]}{\sum w_{j}}=\frac{\sum_{j} \frac{q_{j} \mu_{0}}{\sigma_{0}^{2}}+\frac{\sum \sum x_{k_{j}}}{\sigma^{2}}}{\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}} \\
& =\frac{\frac{\mu_{0}}{\sigma_{0}^{2}}+\frac{\sum x_{j}}{\sigma^{2}}}{\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}}
\end{aligned}
$$

Here, evenly chunk data is suggested.
Suppose n is large and the sub datasets are also large then we can get the posterior approximates
normal distribution. (MC will still work well)

