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Nov 4, 2013

1 Homework Related

• HW2 Due on Nov 13 (Wednesday)

• Use Python for the problem on MapReduce in HW2

2 Python

• Python Version: Python 2: 2.6 and 2.7 (version on Gauss)
Python 3: 3.2 and 3.3

• It does not matter which version you choose but recommend to use the same version
across machines. (Prof. Baines will use Python 2 in class.)

• Recommend Software: PyCharm

• Python examples

1. Combine two strings
foo = 10.0
bar = ”hello”
print bar
baz = ”class”
foo2 = bar +baz
# foo2 puts 2 strings together

2. Conditional Statement
if (i > 0):
[tab] print( ”i is...

1



[tab] ...
[tab] ...
#the code has to be tab indented
#Don’t recommend to copy and paste in Python because it may change the inden-
tation.

3. For loop
for i in 1:n: is equal to for i in range(0, n):

4. foo = 1,2,3,4,5
foo = list(foo)
print foo (1,2,3,4,5)
print type(foo) < type ’list’ >
print foo[0:3] (1, 2, 3)
print foo[1:] (2, 3, 4, 5)
print foo[:1] (1,)
bar=foo[2:]
print bar [3, 4, 5]
foo[3]=100
print foo [1, 2, 3, 100, 5]

5. Convert between string, int and float
print ”float(’6.5’)” +str(float(’6.5’)) →float(’6.5’)6.5
print ”int(’6.5’)” + str(int(’6.5’)) → shows error (can’t print )
print ”int(float(’6.5’)” + str(int(float(’6.5’))) → int(float(’6.5’)6

3 Bayes + Big Data

• Bayes Recap:

X1, ..., Xn
i.i.d∼ N(µ, σ2), where σ2 known and µ ∼ N(µ0, σ
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General: Likelihood p(~x|θ) ; Prior p(θ) → Posterior: p(θ|~x) ∝ p(θ)p(~x|θ)
If p(θ|~x) has no closed form, then use MCMC.
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• For big data, when the ~x in p(~x|θ) is massive, applying MCMC directly to the full
dataset is not computably feasible.

• Idea: ”Chuck” the full data set into a series of smaller datasets, sample for the pos-
terior of each smaller dataset and ”combine” results. (Treat each one as a separate
model and pull together to estimate the posterior distributions.)

• p(θ|~x) ∝ p(θ)p(~x|θ)→ divide the ~x from p(~x|θ) to different dataset.
Assume X’s are conditionally independent given θ.

s∏
j=1

{p(θ)1/sp(~xj |θ)}

(If things are conditionally independent.)

• But it is still not the same as if we sample from the full data. Thus...
Distribute:
~Xn (full data) to

~X1
~X2 ... ~Xs (data)

π(θ)q1π(θ)q2 ... π(θ)qs (prior)

(Note: q1...qs don’t have to have the same amount.)

Where
∑q

j=1 qj = 1, qj > 0, for all j , ∪j ~Xj = ~X,∩j ~Xj = ∅

• Treat each ~Xj and π(θ)qj as a full model and run MCMC.
Aside,

µ ∼ N(µ0, σ
2
0)

p(µ)qj , p(µ) ∝ exp{− 1

2σ20
(µ− µ0)2}

qj

• Note: In the google talk, if θ(t) is discrete we can’t do weight average. We have to
do the density and average over the density.

• For weights, it turns out that a good choice is:

wj = V ar−1(θ| ~Xj)
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• EX: Xij , ..., Xijkj
i.i.d∼ N(µ, σ2), µ ∼ N(µ0, σ

2
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Chunk to ~Xj = {Xij1 , Xij2 , ..., Xijkj}where{ij1, ..., ijkj}are indices ←responding to
the subject.

Modelj : Xij , ..., Xijkj
i.i.d∼ N(µ, σ2), µ ∼ N(µ0,
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∑
wjµj∑
wj

, wj =
qj
σ2
0

+
kj
σ2

→
∑

wj =
qj
σ20

+
kj
σ2

=
1

σ20
+

n

sigma2

V ar(µ) =
1

( 1
σ2
0

+ n
σ2 )2

∑
j

w2
jV ar(µj)

where
∑

j w
2
jV ar(µj) reduce to

∑
j wj

E[µ] =

∑
j wjE[µj ]∑

wj
=

∑
j
qjµ0
σ2
0

+
∑∑

xj
1
σ2
0

+ n
σ2

=

µ0
σ2
0

+
∑
x

σ2

1
σ2
0

+ n
σ2

where
∑
x in the last term contains the full sum of data points

µ ∼ N(E[µ], V ar[µ])

• Comments:

1. It’s not gonna work if the data is not normal but suppose n is large and sub data size
= {d1, ...ds}. If the dj′s are large what happens to p(θ| ~Xj)?
→ Become normal (Posterior converge to normal: CLT result)

2. If the dj′s are large. They are approximately normal → consensus MC will still work
well!!
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