
STA 250 Lecture 12

Rex Cheung

November 7, 2013

EM Module:

To fit any non-standard statistical model, we need to use numerical techniques (i.e.
Metropolis-Hastings, Gibbs, etc...).
For Bayes, we use MCMC methods.
For Maximum Likelihood, we often need to maximize a non-standard function.
This module is all about maximizing ”difficult” likelihoods (or posteriors).

First, we will start with some common optimization algorithms:

• Bisection

• Newton-Raphson

• Scoring

Note: We will actually look at root finding algorithms, i.e. finding x such that g(x) = 0.
To maximize f (assuming f is continuous), we can solve g(x) = f ′(x) = 0.

1 Bisection

This is used for one-dimensional continuous functions.
Let g : R→R be a continuous function on [a,b], we want to find x∗ such that g(x∗) = 0.

The algorithm:

1. Find l and u such that g(l)g(u) < 0 (by IVT, ∃ a root between l and u) .

2. Set c = l+u
2 , compute g(c).

3. If |g(c)| < ε for some small ε > 0, stop.

4. Otherwise, if g(l)g(c) < 0, set u = c, else set l = c.

5. Repeat step 2-4.

Pros Cons
Easy to code + understand There could be multiple roots

Only requires continuity, not differentiability Limits to 1D only
Linear convergence Doesn’t use information about fn. beyond side

1

2 Newton-Raphson

An iterative algorithm to solve for g(x) = 0.
Idea: Update xt to xt+1, where xt+1 = xt + ηt.
Suppose g : R→R, how do we choose ηt?

g(xt+1) = g(xt + ηt) ≈ g(xt) + ηtg
′(xt) +O(η2

t)

So we can get g(xt) + ηtg ′(xt) = 0⇒ ηt = −g(xt)
g ′(xt)

.
Algorithm:

• Pick x0, set t = 0.

• Update xt+1 = xt −
g(xt)
g ′(xt)

.

• If |g(xt+1)| < ε, stop. Else increment t→ t + 1.

• Repeat.

If g : Rm→R
m, then the update is

−−−→xt+1 = −→xt − [5g(−→xt)]−1g(−→xt)

To maximize l(θ), we want to solve l′(θ) = 0, i.e.

θt+1 = θt − [l′′(θt)]
−1l′(θt)

Pros Cons
Typically fast (quadratic convergence) Sensitive to choice of x0

Works in multiple dimensions Could exists multiple roots
Only need one (or two) derivatives Need derivatives

3 Scoring

This algorithm is a small modification of the Newton-Raphson algorithm that’s specif-
ically for maximizing likelihoods.

NR : θt+1 = θt − [l′′(θt)]
−1l′(θt)

Scoring : θt+1 = θt + I−1(θt)l
′(θt)

where I(θ) = E[−l′′(θ)] (the expected Fisher Information). We may prefer scoring if
the expected information is easier to compute than l′′(.) (i.e. in exponential families).
Scoring converges linearly.

4 Rate of convergence of a sequence

Let x1,x2, ... be a sequence that converges to some value x∗, then we say that the se-
quence converges with quadratic rate if

lim
t→∞

|xt+1 − x∗|
|xt − x∗|2

= c, 0 < c <∞

2

The sequence converges with linear rate if

lim
t→∞

|xt+1 − x∗|
|xt − x∗|

= c, 0 < c < 1

If c = 1, it is called super-linear rate of convergence.

5 The EM Algorithm

For many problems the likelihood itself can be difficult to compute, for example
(GLMM):

ηij = xTijβ + zTijγi

yij |β,γi ∼ Bin(nij , g
−1(ηij))

γi ∼ i.i.d.N (0,Σ)

• Data: {yij}

• Parameters: {β,Σ }

• Latent Variables: {γi}

Suppose we want to find the MLE {β,Σ}, we have

P (−→y |β,Σ) =
∫
P (−→y , {γ}|β,Σ)dγ

=
∫ ∏

i,j

(
nij
yij

)
[g−1(ηij)]

yij [1− g−1]nij−yij

×
∏
i

(2π)p/2|Σ|−1/2exp{−1
2
γTi Σ

−1γi}dγ

= NOTHING NICE!

Here our likelihood includes integrals that are difficult to compute. It’s hard to use
NR, or even bisection. However, if we use the EM Algorithm, it turns out we can avoid
directly computing the integral!

Suppose we have a model with parameter θ, observed data yobs, and ”missing data”
ymis, to maximize

P (yobs|θ) =
∫
P (yobs, ymis|θ)dymis

we can use the EM Algorithm. Define:

Q(θ|θ(t)) = E[logP (Yobs,Ymis|θ)|Yobs,θ(t)]

=
∫

[logP (Yobs,Ymis|θ)]P (Ymis|Yobs,θ(t))dYmis

3

Algorithm:

1. Select θ(0), set t = 0.

2. Set θ(t+1) = argmaxθQ(θ|θ(t)).

3. If |θ
(t+1)−θ(t)|
|θ(t)| < ε, stop.

4. Increment t→ t + 1. Repeat 2-4 until converge.

5.1 Example:

Setting:

yobs|ymis ∼ N (ymis,1)
ymis ∼ N (θ,V)

Goal: Maximize P (yobs|θ), where

P (yobs|θ) =
∫
P (yobs, ymis|θ)dymis

=
∫
P (yobs|ymis)P (ymis|θ)dymis

So

Q(θ|θ(t)) = E[log{P (yobs|ymis,θ)P (ymis|θ)}|yobs,θ(t)]

= E[−1
2

(yobs − ymis)2 − 1
2
log(2π)− 1

2V
(ymis −θ)2 − 1

2
log(V)− 1

2π
|yobs,θ(t)]

⇒ E[− 1
2V

(ymis −θ)2|yobs,θ(t)] (1)

In (1), we ignore the terms that don’t involve θ. To compute this, we need to know
P (ymis|yobs,θ(t)). From Bayes, we know P (ymis|yobs,θ(t)) ∝ P (ymis, yobs|θ(t))

⇒ ymis|yobs,θ(t) ∼ N (
θ(t)

V + yobs
1

1
V + 1

1

,
1

1
V + 1

1

)

∼ N (
θ(t) +V yobs
V + 1

,
V

V + 1
)

Therefore,

(1) = − 1
2V

E[y2
mis +θ2 − 2ymisθ|yobs,θ(t)]

= − 1
2V

(θ2 − 2θE[ymis|yobs,θ(t)])

= − 1
2V

(θ2 − 2θ(
θ(t) +V yobs
V + 1

))

All together, Q(θ|θ(t)) = − 1
2V (θ2 − 2θ(θ

(t)+V yobs
V+1)) + constant. Maximizing Q(θ|θ(t)), we

have
∂Q
∂θ

= − 1
2V

(2θ − 2(
θ(t) +V yobs
V + 1

))

4

⇒maximized at θ
(t)+V yobs
V+1 .

Algorithm/Update: θ(t+1) = (1
V+1)θ(t) + (V

V+1)yobs.
Remarks:

• If V is big, then the solution converges faster because θ(t+1) is closer to data.

• If V is small, then the solution converges slower because it’s closer to θ(t), so
need to more steps.

As t→∞, θ(t+1)→ yobs. Also, it is of linear rate convergence: c = 1
V+1 .

5

