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Part 1
Why we use EM Module

To fit any non-standard statistical model, we need to use numerical techniques.
For Bayes =use MCMC methods.
For Maximum Likelihood =need to maximize a non-standard function.
This module is all about maximizing "difficult” likelihoods (or posteriors).
Before we going to that, just do some common optimization algorithms:
e Bisection e Newton-Raphson e Scoring

Part 11
Bisection

Note: We will actually look at root finding algorithms, i.e. finding x such that
g(x) = 0. To maximize f (f is continuous), we can solve g(x) = f “(x) = 0.

For one-dimensional functions( continuous)

Let g : R— R be a continuous function on [a, b|, we want to find z.s.t. g(
xy) = 0.

Idea:

1. Find 1 & u s.t. g(1)g(u) < 0 ( one is positive, the other is negative) .

2. Set ¢ =(14u ) / 2, compute g(c).

3. If g(c) = 0, done. If |g(c)| <e for some small one , done.
4. O/W, ex. g(c) = t, reset 1 and u.

5. O/W, if g(l)g(c) < 0, set u = ¢, else set 1 = c.

6. Repeat



Pro and con:

1. Pro: Easy to code + understand ; continuity; not differentiability

2. Con: could be multiple roots ; only 1D; Doesn’t use information about
function beyond sign.

Part 111
Newton-Raphson

An iterative algorithm to solve for g(x) = 0.
Idea :
Update x4 to x4y1 where x441 = x¢ +1
How to select 7,7

9(wesr) = g(we +m) = g(we) + mg(xe) + 007)
If we gCt g(.ﬁCt_;’_l) —+ mag (,]jt) = 0 = N = _M

g (22)
Algorithm:

1. Pick zg,set t =0

g(xt)

2. Update, z441 = xt—g,(m)

3. If |[g(x+41)] < e, stop, else increment t to t+1

4. Repeat.

Pro and con:

1. Pro: Typically fast (quadratic convergence) ; Works in multiple dimen-
sions.

2. Con: Sensitive to choice of zy (if start at wrong place); Could exists
multiple roots ;Need derivatives; only need one derivative (or two); depend

on root finding.

Part IV
Scoring

This is a small modication of the Newton-Raphson method, specically for max-
imizing likelihoods.

Newton-Raphson method 6,1 = 6, — [I”(6,)] 1 (6,)

Scoring ;41 = 0; + I~1(0,)1 (6;)

where I(0) = E(—l" (0)) < expected fisher information.



We may prefer scoring is the expected information is easier to conjute than

"

I (e.g. in exponential families).
Scoring coverges linearly.

Part V
EM Algorithm

e For many problems, the likelihood itself can be dicult to compute. eg:
Nij = T3 6 + 25y
Yij| B, i ~ Bin(nij, g~ (ni;))
vi ~ 1.i.d.N(0,%) where Data:{y;;} ; Parameters:{3, X} ; Latent variable: {r;}

Then we have :

P(¥18,2) = [ P(Y,{7}|8.2)d,

Ny _ iy 1N, —ya s — —
=J1IIC 7l Ymig)vi [L = g7 —va] « [1(2m)P/2 (8|7 2eap{— 7] 7 v }d,
%] . i

Our likelihood involves integrals that are dicult to compute. Hard to use Bi-
section or Newton-Raphson. Using EM, we can avoid directly computing the
integrals. Suppose we have a model with parameter 0, observed data y,ps, and
missing data y,,;s to maximize:

P(yobsle) = fP<yobsaymis‘9)dymis

we can use the EM algorithm:

Q(016")
= E[logP (Yobs, Ymis|0)|Yobs, 0']
= [[logP(Yobs, Yimis|0)] P (Ynis| Yobs, 0°)dy,,,.
Algorithm:

1. Select 6%, set t=0.

2. Set 01! = argmazQ(0]6?)

t+1_ pt
3. Check convergence. If 16 WIG | < €, stop

4. Else, increment t to t 4+ 1, repeat step 2-4 until converge.



Part VI
Example

Setting:
yobs‘ymis ~ N( mis) s Ymis ~ N(au V)
Goal:maximize P(yobs‘a) = fp(yobsaymiSW)dymis = fP(yobs|ymzs)P(szs‘9)dymzs
Q(Q‘Qt) = E[ZOQ{P(yobs‘ymisa G)P(ymis|9)}|yob579t]
= E[_%(yobs - ymis)2 - %ZOQ(QTF) - ﬁ(ymis - 0)2 - %log(V) - %|y0637 et]

= E[_%(ymis - 9)2‘11/01757 et]
we have ignored any term not involving .To compute this expecta-
tion, we need to know P(ymis|Yobs, 0°)

P (ymis |Z/obs , 6 ) O(P(ymis y Yobs ‘at)

= Ymmis|Yobs, 0 ~ N (’},;jo%fs’ éii) ~ N(M X
Q(0]0")

= E[— 3t (Ymis — 0)?|Yobs, 0]

= —5v ElYmis + 0 — 2UmisOlyobs, 0]

= — 51 (0° = 20E[yumis |yobs, 0'])

= — 51 (62 — 2970t;‘1y1"b5) + constant

2Q _
90

= o4 (20 — 2(PE V8o )) —maximized at ©5V Y
Algorithm: '+ = (%ﬂﬁt + (VLH)yobs)
Ast = INF,0' =y,

Linear rate convergence : (%H), lower rate is better.



