Lecture note 12

by Qian Li

Nov. 7th, 2013

Part I

Why we use EM Module

To fit any non-standard statistical model, we need to use numerical techniques. For Bayes \Rightarrow use MCMC methods.
For Maximum Likelihood \Rightarrow need to maximize a non-standard function. This module is all about maximizing "difficult" likelihoods (or posteriors). Before we going to that, just do some common optimization algorithms:

- Bisection • Newton-Raphson • Scoring

Part II

Bisection

Note: We will actually look at root finding algorithms, i.e. finding x such that $\mathrm{g}(\mathrm{x})=0$. To maximize f (f is continuous), we can solve $\mathrm{g}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})=0$.

For one-dimensional functions(continuous)
Let $\mathrm{g}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a continuous function on $[\mathrm{a}, \mathrm{b}]$, we want to find x_{*} s.t. $\mathrm{g}($ $\left.x_{*}\right)=0$.

Idea:

1. Find l \& u s.t. $\mathrm{g}(\mathrm{l}) \mathrm{g}(\mathrm{u})<0$ (one is positive, the other is negative) .
2. Set $\mathrm{c}=(\mathrm{l}+\mathrm{u}) / 2$, compute $\mathrm{g}(\mathrm{c})$.
3. If $\mathrm{g}(\mathrm{c})=0$, done. If $|\mathrm{g}(\mathrm{c})|<\varepsilon$ for some small one, done.
4. O / W, ex. $\mathrm{g}(\mathrm{c})=\mathrm{t}$, reset l and u .
5. O / W, if $\mathrm{g}(\mathrm{l}) \mathrm{g}(\mathrm{c})<0$, set $\mathrm{u}=\mathrm{c}$, else set $\mathrm{l}=\mathrm{c}$.
6. Repeat

Pro and con:

1. Pro: Easy to code + understand ; continuity; not differentiability
2. Con: could be multiple roots ; only 1D; Doesn't use information about function beyond sign.

Part III

Newton-Raphson

An iterative algorithm to solve for $\mathrm{g}(\mathrm{x})=0$.
Idea:
Update x_{t} to x_{t+1} where $x_{t+1}=x_{t}+\eta_{t}$
How to select η_{t} ?
$g\left(x_{t+1}\right)=g\left(x_{t}+\eta_{t}\right) \approx g\left(x_{t}\right)+\eta_{t}^{\prime} g\left(x_{t}\right)+\theta\left(\eta_{t}^{2}\right)$
If we get $g\left(x_{t+1}\right)+\eta_{t} g^{\prime}\left(x_{t}\right)=0 \Rightarrow \eta_{t}=-\frac{g\left(x_{t}\right)}{g^{\prime}\left(x_{t}\right)}$
Algorithm:

1. Pick x_{0}, set $\mathrm{t}=0$
2. Update, $x_{t+1}=x_{t}-\frac{g\left(x_{t}\right)}{g^{\prime}\left(x_{t}\right)}$
3. If $\left|g\left(x_{t+1}\right)\right|<\varepsilon$, stop, else increment t to $\mathrm{t}+1$
4. Repeat.

Pro and con:

1. Pro: Typically fast (quadratic convergence) ; Works in multiple dimensions.
2. Con: Sensitive to choice of x_{0} (if start at wrong place); Could exists multiple roots ;Need derivatives; only need one derivative (or two); depend on root finding.

Part IV

Scoring

This is a small modication of the Newton-Raphson method, specically for maximizing likelihoods.

Newton-Raphson method $\theta_{t+1}=\theta_{t}-\left[l^{\prime \prime}\left(\theta_{t}\right)\right]^{-1} l^{\prime}\left(\theta_{t}\right)$
Scoring $\theta_{t+1}=\theta_{t}+I^{-1}\left(\theta_{t}\right) l^{\prime}\left(\theta_{t}\right)$
where $I(\theta)=E\left(-l^{\prime \prime}(\theta)\right) \Leftarrow$ expected fisher information.

We may prefer scoring is the expected information is easier to conjute than $l^{\prime \prime}$ (e.g. in exponential families).

Scoring coverges linearly.

Part V

EM Algorithm

- For many problems, the likelihood itself can be dicult to compute. eg:
$\eta_{i j}=x_{i j}^{T} \beta+z_{i j}^{T} \gamma_{i}$
$y_{i j} \mid \beta, \gamma_{i} \sim \operatorname{Bin}\left(n_{i j}, g^{-1}\left(\eta_{i j}\right)\right)$
$\gamma_{i} \sim$ i.i.d. $N(0, \Sigma)$ where Data: $\left\{y_{i j}\right\}$; Parameters: $\{\beta, \Sigma\}$; Latent variable: $\left\{r_{i}\right\}$
Then we have :
$P(\vec{y} \mid \beta, \Sigma)=\int P(\vec{y},\{\gamma\} \mid \beta, \Sigma) d_{\gamma}$
$=\int \prod_{i, j}\binom{n_{i j}}{y_{i j}}\left[g^{-1}\left(\eta_{i j}\right)^{y_{i j}}\left[1-g^{-1}\right]^{n_{i j}-y_{i j}}\right] * \prod_{i}(2 \pi)^{p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2} \gamma_{i}^{T} \Sigma^{-1} \gamma_{i}\right\} d_{r}$
Our likelihood involves integrals that are dicult to compute. Hard to use Bisection or Newton-Raphson. Using EM, we can avoid directly computing the integrals. Suppose we have a model with parameter θ, observed data $y_{o b s}$, and missing data $y_{m i s}$ to maximize:

$$
\begin{aligned}
& P\left(y_{o b s} \mid \theta\right)=\int P\left(y_{o b s}, y_{m i s} \mid \theta\right) d y_{m i s} \\
& \text { we can use the EM algorithm: } \\
& \quad Q\left(\theta \mid \theta^{t}\right) \\
& =E\left[\log P\left(Y_{o b s}, Y_{m i s} \mid \theta\right) \mid Y_{o b s}, \theta^{t}\right] \\
& =\int\left[\log P\left(Y_{o b s}, Y_{m i s} \mid \theta\right)\right] P\left(Y_{m i s} \mid Y_{o b s}, \theta^{t}\right) d_{Y_{m i s}}
\end{aligned}
$$

Algorithm:

1. Select θ^{0}, set $\mathrm{t}=0$.
2. Set $\theta^{t+1}=\operatorname{argmax} Q\left(\theta \mid \theta^{t}\right)$
3. Check convergence. If $\frac{\left|\theta^{t+1}-\theta^{t}\right|}{\left|\theta^{t}\right|}<\varepsilon$, stop
4. Else, increment to tore +1 , repeat step 2-4 until converge.

Part VI

Example

Setting:

$$
y_{o b s} \mid y_{m i s} \sim N\left(y_{m i s}\right) ; y_{m i s} \sim N(\theta, V)
$$

Goal:maximize $P\left(y_{o b s} \mid \theta\right)=\int P\left(y_{o b s}, y_{m i s} \mid \theta\right) d y_{m i s}=\int P\left(y_{o b s} \mid y_{m i s}\right) P\left(Y_{m i s} \mid \theta\right) d y_{m i s}$

$$
\begin{aligned}
& Q\left(\theta \mid \theta^{t}\right)=E\left[\log \left\{P\left(y_{o b s} \mid y_{m i s}, \theta\right) P\left(y_{m i s} \mid \theta\right)\right\} \mid y_{o b s}, \theta^{t}\right] \\
& =E\left[\left.-\frac{1}{2}\left(y_{o b s}-y_{m i s}\right)^{2}-\frac{1}{2} \log (2 \pi)-\frac{1}{2 V}\left(y_{m i s}-\theta\right)^{2}-\frac{1}{2} \log (V)-\frac{1}{2 \pi} \right\rvert\, y_{o b s}, \theta^{t}\right] \\
& =E\left[\left.-\frac{1}{2 V}\left(y_{m i s}-\theta\right)^{2} \right\rvert\, y_{o b s}, \theta^{t}\right]
\end{aligned}
$$

we have ignored any term not involving .To compute this expectation, we need to know $\mathrm{P}\left(y_{m i s} \mid y_{o b s}, \theta^{t}\right)$
$\mathrm{P}\left(y_{m i s} \mid y_{o b s}, \theta^{t}\right) \propto \mathrm{P}\left(y_{m i s}, y_{o b s} \mid \theta^{t}\right)$
$\Longrightarrow y_{m i s} \mid y_{o b s}, \theta^{t} \sim N\left(\frac{\frac{\theta^{t}}{V}+\frac{y_{o b s}}{1}}{\frac{1}{V}+\frac{1}{1}}, \frac{1}{\frac{1}{V}+\frac{1}{1}}\right) \sim N\left(\frac{\theta^{t}+V y_{o b s}}{V+1}, \frac{V}{V+1}\right)$
$Q\left(\theta \mid \theta^{t}\right)$
$=E\left[\left.-\frac{1}{2 V}\left(y_{m i s}-\theta\right)^{2} \right\rvert\, y_{o b s}, \theta^{t}\right]$
$=-\frac{1}{2 V} E\left[y_{m i s}^{2}+\theta^{2}-2 y_{m i s} \theta \mid y_{o b s}, \theta^{t}\right]$
$=-\frac{1}{2 V}\left(\theta^{2}-2 \theta E\left[y_{m i s} \mid y_{o b s}, \theta^{t}\right]\right)$
$=-\frac{1}{2 V}\left(\theta^{2}-2 \theta \frac{\theta^{t}+V y_{\text {obs }}}{V+1}\right)+$ constant

$$
\frac{\partial Q}{\partial \theta}=-\frac{1}{2 V}\left(2 \theta-2\left(\frac{\theta^{t}+V y_{o b s}}{V+1}\right)\right) \Rightarrow \text { maximized at } \frac{\theta^{t}+V y_{o b s}}{V+1}
$$

Algorithm: $\theta^{t+1}=\left(\frac{1}{V+1} \theta^{t}+\left(\frac{V}{V+1}\right) y_{o b s}\right)$
As $t \Rightarrow I N F, \theta^{t+1} \Rightarrow y_{o b s}$
Linear rate convergence : $\left(\frac{1}{V+1}\right)$, lower rate is better.

