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Part I

Why we use EM Module
To fit any non-standard statistical model, we need to use numerical techniques.

For Bayes ⇒use MCMC methods.
For Maximum Likelihood ⇒need to maximize a non-standard function.
This module is all about maximizing ”difficult” likelihoods (or posteriors).
Before we going to that, just do some common optimization algorithms:
• Bisection • Newton-Raphson • Scoring

Part II

Bisection
Note: We will actually look at root finding algorithms, i.e. finding x such that
g(x) = 0. To maximize f (f is continuous), we can solve g(x) = f ´(x) = 0.

For one-dimensional functions( continuous)
Let g : R→ R be a continuous function on [a, b], we want to find x∗s.t. g(

x∗) = 0.
Idea:

1. Find l & u s.t. g(l)g(u) < 0 ( one is positive, the other is negative) .

2. Set c =( l+u ) / 2 , compute g(c).

3. If g(c) = 0, done. If |g(c)| <ε for some small one , done.

4. O/W, ex. g(c) = t, reset l and u.

5. O/W, if g(l)g(c) < 0, set u = c, else set l = c.

6. Repeat
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Pro and con:
1. Pro: Easy to code + understand ; continuity; not differentiability

2. Con: could be multiple roots ; only 1D; Doesn’t use information about
function beyond sign.

Part III

Newton-Raphson
An iterative algorithm to solve for g(x) = 0.

Idea :
Update xt to xt+1 where xt+1 = xt +ηt
How to select ηt?
g(xt+1) = g(xt + ηt) ≈ g(xt) + η

′

tg(xt) + θ(η2t )

If we get g(xt+1) + ηtg
′
(xt) = 0⇒ ηt = − g(xt)

g′ (xt)

Algorithm:

1. Pick x0,set t = 0

2. Update, xt+1 = xt− g(xt)

g′ (xt)

3. If |g(xt+1)| < ε, stop, else increment t to t+1

4. Repeat.

Pro and con:
1. Pro: Typically fast (quadratic convergence) ; Works in multiple dimen-

sions.

2. Con: Sensitive to choice of x0 (if start at wrong place); Could exists
multiple roots ;Need derivatives; only need one derivative (or two); depend
on root finding.

Part IV

Scoring
This is a small modication of the Newton-Raphson method, specically for max-
imizing likelihoods.

Newton-Raphson method θt+1 = θt − [l
′′
(θt)]

−1l
′
(θt)

Scoring θt+1 = θt + I−1(θt)l
′
(θt)

where I(θ) = E(−l′′(θ))⇐ expected fisher information.
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We may prefer scoring is the expected information is easier to conjute than
l
′′
(e.g. in exponential families).
Scoring coverges linearly.

Part V

EM Algorithm
• For many problems, the likelihood itself can be dicult to compute. eg:

ηij = xTijβ + zTijγi

yij |β, γi ∼ Bin(nij , g
−1(ηij))

γi ∼ i.i.d.N(0,Σ) where Data:{yij} ; Parameters:{β,Σ} ; Latent variable: {ri}

Then we have :

P (−→y |β,Σ) =
´
P (−→y , {γ}|β,Σ)dγ

=
´ ∏
i,j

(
nij
yij

)[g−1(ηij)
yij [1− g−1]nij−yij ] ∗

∏
i

(2π)p/2|Σ|−1/2exp{− 1
2γ

T
i Σ−1γi}dr

Our likelihood involves integrals that are dicult to compute. Hard to use Bi-
section or Newton-Raphson. Using EM, we can avoid directly computing the
integrals. Suppose we have a model with parameter θ, observed data yobs, and
missing data ymis to maximize:

P (yobs|θ) =
´
P (yobs, ymis|θ)dymis

we can use the EM algorithm:
Q(θ|θt)

= E[logP (Yobs, Ymis|θ)|Yobs, θt]

=
´

[logP (Yobs, Ymis|θ)]P (Ymis|Yobs, θt)dYmis

Algorithm:

1. Select θ0, set t=0.

2. Set θt+1 = argmaxQ(θ|θt)

3. Check convergence. If |θ
t+1−θt|
|θt| < ε, stop

4. Else, increment t to t + 1, repeat step 2-4 until converge.
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Part VI

Example
Setting:

yobs|ymis ∼ N(ymis) ; ymis ∼ N(θ, V )

Goal:maximize P (yobs|θ) =
´
P (yobs, ymis|θ)dymis =

´
P (yobs|ymis)P (Ymis|θ)dymis

Q(θ|θt) = E[log{P (yobs|ymis, θ)P (ymis|θ)}|yobs, θt]
= E[− 1

2 (yobs − ymis)2 − 1
2 log(2π)− 1

2V (ymis − θ)2 − 1
2 log(V )− 1

2π |yobs, θ
t]

= E[− 1
2V (ymis − θ)2|yobs, θt]

we have ignored any term not involving .To compute this expecta-
tion, we need to know P(ymis|yobs, θt)
P(ymis|yobs, θt)∝P(ymis, yobs|θt)

=⇒ ymis|yobs, θt ∼ N
(

θt

V +
yobs

1
1
V + 1

1

, 1
1
V + 1

1

)
∼ N( θ

t+V yobs
V+1 , V

V+1 )

Q(θ|θt)
= E[− 1

2V (ymis − θ)2|yobs, θt]
= − 1

2V E[y2mis + θ2 − 2ymisθ|yobs, θt]
= − 1

2V (θ2 − 2θE[ymis|yobs, θt])

= − 1
2V (θ2 − 2θ θ

t+V yobs
V+1 ) + constant

∂Q
∂θ = − 1

2V (2θ − 2( θ
t+V yobs
V+1 ))⇒maximized at θt+V yobs

V+1

Algorithm: θt+1 = ( 1
V+1θ

t + ( V
V+1 )yobs)

As t⇒ INF, θt+1 ⇒ yobs
Linear rate convergence : ( 1

V+1 ), lower rate is better.
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