STA 250. Fall, 2013.
 Lecture 12: Optimization + EM Lecture \# 1 .
 Transcribed by Eliot Paisley. 11/6/13

Introduction:

- We'll spend only a short time on optimization ... this is really an EM module.
- To fit any non-standard statistical models (i.e., outside of just lm, glm, or lme), we need know a little bit about numerical methods. We've already seen one example, the Metropolis-Hastings algorithm.
- For Bayes problems we use Markov-Chain Monte Carlo (MCMC) methods, while for maximum likelihood (ML) problems we need to maximize a non-standard function. This entire module is about maximizing these 'difficult' likelihoods (or posteriors).

To begin, we start by looking at some common optimization algorithms; Bisection, Newton-Raphson, and Scoring.
Note: we're actually looking at root-finding algorithms. i.e. finding x such that $g(x)=0$. To maximize f (if continuous) we can solve $g(x)=f^{\prime}(x)=0$.

Bisection:

- For 1-dimensional continuous functions.
- Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$. We want to find x_{*} such that $g\left(x_{*}\right)=0$.
- Idea: Find l and u such that $g(l) \cdot g(u)<0$, which implies that $g(l)$ and $g(u)$ will have different signs.
- Set $c=\frac{l+u}{2}$, and compute $g(c)$. If $g(l) \cdot g(c)<0$, then set $u=c$. Otherwise, set $l=c$.
- Repeat the step above.
- Pros: Easy to code, and understand. Converges in linear time. We only need continuity, not differentiability.
- Cons: Could be multiple roots. Only works in 1-dimension, doesn't generalize nicely to higher dimensions. Doesn't use much information about other values. For example, if $g(l)=-0.1$, and $g(u)=10000$, then we still select c to be in the middle.

Newton-Raphson

- This is an iterative algorithm to solve for $g(x)=0$.
- Idea: Update x_{t} to x_{t+1}, where $x_{t+1}=x_{t}+\eta_{t}$.
- How to choose η_{t} is the question.
- We can write

$$
g\left(x_{t+1}\right)=g\left(x_{t}+\eta_{t}\right) \approx g\left(x_{t}\right)+\eta_{t} g^{\prime}\left(x_{t}\right)+\mathcal{O}\left(\eta_{t}^{2}\right)
$$

and ignoring the higher-order terms, if we set $g(x)+\eta_{t} g^{\prime}\left(x_{t}\right)=0$, then we have

$$
\eta_{t}=-\frac{g\left(x_{t}\right)}{g^{\prime}\left(x_{t}\right)}
$$

- Algorithm:
- Pick x_{0}. Set $t=0$.
- Update $x_{t+1}=x_{t}-\frac{g\left(x_{t}\right)}{g^{\prime}\left(x_{t}\right)}$.
- If $\left|g\left(x_{t+1}\right)\right|<\epsilon$, then stop. Otherwise, set $t \rightarrow t+1$ and update again.
- Pros: Typically fast (quadratic convergence). Works in multiple dimensions. Only needs one (or two) derivatives.
- Cons: Sensitive to the choice of x_{0}. There could be multiple roots. We need to be able to calculate derivatives.
- If $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, then $\vec{x}_{t+1}=\vec{x}_{t}-\left[\nabla g\left(\vec{x}_{t}\right)\right]^{-1} g\left(\vec{x}_{t}\right)$
- To maximize $l(\theta)$, we want to solve $l^{\prime}(\theta)=0$, where $\theta_{t+1}=\theta_{t}-\left[l^{\prime \prime}\left(\theta_{t}\right)\right]^{-1} l^{\prime}\left(\theta_{t}\right)$.

Rate of Convergence of a Sequence: Let x_{1}, x_{2}, \ldots, be a sequence that converges to some value x_{*}. Then we say that the sequence converges with quadratic rate if

$$
\lim _{t \rightarrow \infty} \frac{\left|x_{t+1}-x_{*}\right|}{\left|x_{t}-x_{*}\right|^{2}}=c, \quad 0<c<\infty
$$

Similarly, we say that a sequence converges with a linear rate if

$$
\lim _{t \rightarrow \infty} \frac{\left|x_{t+1}-x_{*}\right|}{\left|x_{t}-x_{*}\right|}=c, \quad 0<c<1
$$

where if $c=1$ we say the sequence has a 'super linear' rate of convergence.
Question: Are there algorithms that converge in cubic time?
Answer: Yes, but only for specific types of problems.

Scoring

- This is a small modification of the Newton-Raphson method, specifically for maximizing likelihoods.
- In Newton-Raphson we had $\theta_{t+1}=\theta_{t}-\left[l^{\prime \prime}\left(\theta_{t}\right)\right]^{-1} l^{\prime}\left(\theta_{t}\right)$, where in Scoring we use $\theta_{t+1}=\theta_{t}-I\left(\theta_{t}\right)^{-1} l^{\prime}\left(\theta_{t}\right)$.
- $l^{\prime \prime}\left(\theta_{t}\right)$ is the observed Fisher information, while $I\left(\theta_{t}\right)^{-1}=E\left(-l^{\prime \prime}(\theta)\right)$ is the expected Fisher information.
- Scoring is preferred to Newton-Raphson if the expected information is easier to compute than the observed (e.g. in exponential families).
- Scoring coverges linearly.

The EM Algorithm:

- For many problems, the likelihood itself can be difficult to compute. e.g.

$$
\begin{aligned}
\eta_{i j} & =x_{i j}^{T} \beta+z_{i j}^{T} \gamma_{i} \\
y_{i j} \mid \beta, \gamma_{j} & \sim \operatorname{Bin}\left(n_{i j}, g^{-1}\left(\eta_{i j}\right)\right) \\
\gamma_{i} & \stackrel{i . i . d}{\sim} \mathcal{N}\left(0, \Sigma^{-1}\right)
\end{aligned}
$$

where $\left\{y_{i}\right\}$ is the data, with parameters $\{\beta, \Sigma\}$, and latent variables $\left\{\gamma_{i}\right\}$. The likelihood for this model is then

$$
\begin{aligned}
p(\vec{y} \mid \beta, \Sigma) & =\int p(\vec{y},\{\gamma\} \mid \beta, \Sigma) d \gamma \\
& =\int \prod_{i, j}\binom{n_{i j}}{y_{i j}}\left[g^{-1}\left(\eta_{i j}\right)\right]^{y_{i j}}\left[1-g^{-1}\left(\eta_{i j}\right)\right]^{n_{i j}-y_{i j}} \cdot \prod_{j}(2 \pi)^{-p / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2} \gamma_{j}^{T} \Sigma^{T} \gamma_{j}\right\} d \gamma_{1}, \ldots, d \gamma_{j}
\end{aligned}
$$

$$
=\text { nothing nice at all }
$$

- Overall, our likelihood involves integrals that are difficult to compute.
- For these situations it's hard to use Bisection or Newton-Raphson. Using EM we avoid directly computing the integrals.
- Suppose we have a model with parameter θ, observed data $y_{o b s}$, and "missing" data $y_{\text {mis }}$ to maximize.

$$
p\left(y_{o b s} \mid \theta\right)=\int p\left(y_{o b s}, y_{m i s} \mid \theta\right) d y_{m i s}
$$

here, we can use the EM algorithm.

- Define $Q\left(\theta \mid \theta^{(t)}\right)=E\left[\log p\left(y_{o b s}, y_{m i s} \mid \theta\right) \mid y_{o b s}, \theta^{(t)}\right]=\int \log p\left(y_{o b s}, y_{m i s} \mid \theta\right) p\left(y_{m i s} \mid y_{o b s}, \theta^{(t)}\right) d y_{m i s}$.

Algorithm:

- Select $\theta^{(0)}$, set $t=0$.
$-\operatorname{Set} \theta^{(t+1)}=\underset{\theta}{\operatorname{argmax}} Q\left(\theta \mid \theta^{(t)}\right)$.
- Check convergence. If $\frac{\left|\theta^{(t+1)}\right|-\left|\theta^{(t)}\right|}{\left|\theta^{(t)}\right|}<\epsilon$, then stop. Otherwise, increment $t \rightarrow t+1$ and go back to the previous step.
- Simple Example:

$$
\begin{gathered}
y_{o b s} \mid y_{m i s} \sim \mathcal{N}\left(y_{m i s}, 1\right) \\
y_{m i s} \sim \mathcal{N}(\theta, V), \quad V \text { known } .
\end{gathered}
$$

Goal: maximize $p\left(y_{o b s} \mid \theta\right)$.

$$
p\left(y_{o b s} \mid \theta\right)=\int p\left(y_{o b s}, y_{m i s} \mid \theta\right) d y_{m i s}=\int p\left(y_{o b s} \mid y_{m i s}\right) p\left(y_{m i s} \mid \theta\right) d y_{m i s}
$$

Here we have

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(t)}\right) & =E\left[p\left(y_{o b s} \mid y_{m i s}\right) p\left(y_{m i s} \mid \theta\right) \log \right] \\
& =E\left[\left.-\frac{1}{2}\left(y_{o b s}-y_{m i s}\right)^{2}-\frac{1}{2} \log (2 \pi)-\frac{1}{2 V} \log (V)-\frac{1}{2} \log (2 \pi)-\frac{1}{2 V}\left(y_{m i s}-\theta\right)^{2} \right\rvert\, y_{o b s}, \theta^{(t)}\right] \\
& =E\left[\left.-\frac{1}{2 V}\left(y_{m i s}-\theta\right)^{2} \right\rvert\, y_{o b s}, \theta^{(t)}\right]
\end{aligned}
$$

where we have ignored any term not involving θ.
To compute this expectation, we need to know $p\left(y_{m i s} \mid y_{o b s}, \theta^{(t)}\right)$.

$$
\begin{gathered}
p\left(y_{m i s} \mid y_{o b s}, \theta^{(t)}\right) \propto p\left(y_{m i s}, y_{o b s} \mid \theta^{(t)}\right) \\
\Longrightarrow y_{m i s} \mid y_{o b s}, \theta^{(t)} \sim \mathcal{N}\left(\frac{\frac{\theta^{(t)}}{V}+y_{o b s}}{\frac{1}{V}+1}, \frac{1}{\frac{1}{V}+1}\right) \sim \mathcal{N}\left(\frac{\theta^{(t)}+V y_{o b s}}{V+1}, \frac{V}{V+1}\right)
\end{gathered}
$$

Thus,

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(t)}\right) & =E\left[\left.-\frac{1}{2 V}\left(y_{m i s}-\theta\right)^{2} \right\rvert\, y_{o b s}, \theta^{(t)}\right] \\
& =-\frac{1}{2 V} E\left[y_{m i s}^{2}+\theta^{2}-2 y_{m i s} \theta \mid y_{o b s}, \theta^{(t)}\right] \\
& =-\frac{1}{2 V}\left(\theta^{2}-2 \theta E\left[y_{m i s} \mid y_{o b s}, \theta^{(t)}\right]\right) \\
& =-\frac{1}{2 V}\left(\theta^{2}-2 \theta \frac{\theta^{(t)}+V y_{o b s}}{V+1}\right)+\text { constant }
\end{aligned}
$$

So,

$$
\frac{d Q}{d \theta}=-\frac{1}{2 V}\left(2 \theta-2 \frac{\theta^{(t)}+V y_{o b s}}{V+1}\right)
$$

and setting equal to 0 , we arrive at

$$
\theta=\frac{\theta^{(t)}+V y_{o b s}}{V+1}
$$

Algorithm:

$$
\left.\begin{array}{c}
\theta^{(t+1)}=\frac{1}{V+1} \theta^{(t)}+\frac{V}{V+1} y_{o b s} \\
y_{o b s} \mid y_{m i s} \\
\sim \mathcal{N}\left(y_{m i s}, 1\right) \\
y_{m i s}
\end{array}\right) \mathcal{N}(\theta, V)
$$

and as $t \rightarrow \infty, \theta^{(t+1)} \rightarrow y_{\text {obs }}$.
This is a linear rate of convergence: $\frac{1}{V+1}$, with speed inversely proportional to the size of V. Note that low rates indicate fast convergence, rates close to 1 indicate slow convergence.

