STA 250. Fall, 2013.

Lecture 12: Optimization + EM Lecture # 1.

Transcribed by Eliot Paisley. 11/6/13

Introduction:

We'll spend only a short time on optimization ... this is really an EM module.

To fit any non-standard statistical models (i.e., outside of just 1m, glm, or lme), we need know a little bit about
numerical methods. We’ve already seen one example, the Metropolis-Hastings algorithm.

For Bayes problems we use Markov-Chain Monte Carlo (MCMC) methods, while for maximum likelihood (ML)
problems we need to maximize a non-standard function. This entire module is about maximizing these ‘difficult’
likelihoods (or posteriors).

To begin, we start by looking at some common optimization algorithms; Bisection, Newton-Raphson, and Scoring.
Note: we’re actually looking at root-finding algorithms. i.e. finding x such that g(x) = 0. To mazimize [(if continuous)
we can solve g(x) = f'(x) = 0.

Bisection:

For 1-dimensional continuous functions.

Let g : R — R be a continuous function on [a,b]. We want to find x, such that g(z.) = 0.

Idea: Find I and u such that g(I) - g(u) < 0, which implies that ¢g(I) and g(u) will have different signs.

Set ¢ = £ and compute g(c). If g(1) - g(c) <0, then set u = c. Otherwise, set [= c.

Repeat the step above.

Pros: Easy to code, and understand. Converges in linear time. We only need continuity, not differentiability.

Cons: Could be multiple roots. Only works in 1-dimension, doesn’t generalize nicely to higher dimensions. Doesn’t
use much information about other values. For example, if g(I) = —0.1, and g(u) = 10000, then we still select ¢ to be
in the middle.

Newton-Raphson

This is an iterative algorithm to solve for g(x) = 0.
Idea: Update z; to x141, where x4y = x4 + 1.
How to choose 7 is the question.

We can write
9(wi41) = g(@e +m) = g(x) + mg' (ze) + O()
and ignoring the higher-order terms, if we set g(z) + n:g’(x¢) = 0, then we have

~—

(x4

Q

Algorithm:
— Pick zg. Set t = 0.

— Update z441 = 2y — glzt)

g'(ze)”
— If |g(xt41)| < €, then stop. Otherwise, set t — ¢t + 1 and update again.

Pros: Typically fast (quadratic convergence). Works in multiple dimensions. Only needs one (or two) derivatives.
Cons: Sensitive to the choice of xg. There could be multiple roots. We need to be able to calculate derivatives.
If g : R™ — R™, then iy = 71 — [Vo(Z)] ' 9(Z)

To maximize [(6), we want to solve I(#) = 0, where 0,1 = 6, — [I”(6,)] " '(6;).

Rate of Convergence of a Sequence: Let x1, xs,..., be a sequence that converges to some value x,. Then we say that the
sequence converges with quadratic rate if

lim 7|xt+l _ x*|

t—o0 |(£t*$*|2 - O<e<eo

Similarly, we say that a sequence converges with a linear rate if

lim 1201 = 7]

=c¢ O<cx1
t—00 |l't_-T*|

where if ¢ = 1 we say the sequence has a ‘super linear’ rate of convergence.
Question: Are there algorithms that converge in cubic time?
Answer: Yes, but only for specific types of problems.

e This is a small modification of the Newton-Raphson method, specifically for maximizing likelihoods.
e In Newton-Raphson we had 6,11 = 0; — [l”(@t)]_1 I'(6;), where in Scoring we use ;11 = 0; — I(0;) = ' (6;).
e ["(6;) is the observed Fisher information, while I(6;)~! = E(—1"(f)) is the exzpected Fisher information.

e Scoring is preferred to Newton-Raphson if the expected information is easier to compute than the observed (e.g. in
exponential families).

e Scoring coverges linearly.

The EM Algorithm:

e For many problems, the likelihood itself can be difficult to compute. e.g.
Nij = x;‘gﬂ + ZzTﬂz

Yij|B,7; ~ Bin(nij, g~ (ni5))
v N0, 27

where {y;} is the data, with parameters {3, X}, and latent variables {;}.
The likelihood for this model is then

§(719.9) = [p(d. 0H5.%) dy
= /H (n”) o7)] [=g ")) ™" - [(2m) P2 212 eXP{—;%-TET’yj} dy,. .., dv

Yij J

= nothing nice at all

Overall, our likelihood involves integrals that are difficult to compute.

For these situations it’s hard to use Bisection or Newton-Raphson. Using EM we avoid directly computing the
integrals.

e Suppose we have a model with parameter 6, observed data y,ps, and “missing” data y,,;s to maximize.

p(yobs‘a) = /p(yobSa ymisw) dymis

here, we can use the EM algorithm.

Define Q(ala(t)) =F [logp(yobsv ymis‘9)|yobsa 9(15)} = f logp(yobsv ymis|0)p(ymis‘yobsv e(t))dymzs
Algorithm:

— Select), set ¢t = 0.
— Set 04+ = argmazx Q(0|6W).
0

- |9(t+1)‘,|9(t)|
Check convergence. If e

step.

< €, then stop. Otherwise, increment ¢ — ¢ + 1 and go back to the previous

e Simple Example:
yobslymis ~ N(ymi57 1)

Ymis ™~ N(G, V), V' known.

Goal: maximize p(Yopbs|0).

p(yobsw) - /p(yobsvymisw) dymzs - /p(yobs|ymis)p(ymis|9) dymzs

Here we have

Q(9|9(t)) =F [p(yobslymis)p(ymis|9) log]

_ 1 2 1 1 1 1 _ 9 ®)
=K |: 9 (yobs ymzs) 2 10g(27’(’) o IOg(V) 9 10g(2ﬂ') o (ymzs 9) Yobs 9
1
=F|-—— mis*92 obs 9(15)
where we have ignored any term not involving 6.
To compute this expectation, we need to know p(Ymis|yobs, 04).
p(ymis |yobsa e(t)) X p(ymis7 yobs|9(t))
o(t)
St Yobs 1 0D + Vygs V
= Ymis|Yobs o(t) ~ v ~ 008
Ymis [Yobs: N ++1 TH+1 N V+1l V41
Thus,
QUOI0D) = B |~ (ymis — 0)2 |yone. 0
2V maes 008y
1
=—-——0F 2. 02*2 mise obs a(t)
2V |:ymls + Y Yobs
1
= T avr 92 —20F mis|Yobs 0(15))
1 0 4+ Vyops
= v <92 - ‘j_’_lyb) + constant
So,

dQ 1 0 4+ Vyors
- 20 — 97—~ Jobs
(V41

and setting equal to 0, we arrive at
. Q(t) + Vyobs
- V+1

Algorithm:

] v
H® obs
vi1® Tygppler

yobs|ymis ~ N(ymisa 1)
Ymis ™~ N(aa V)

e+l —

and as t — oo, 0D — g ..
This is a linear rate of convergence: V%H, with speed inversely proportional to the size of V. Note that low rates
indicate fast convergence, rates close to 1 indicate slow convergence.

