
STA 250. Fall, 2013.
Lecture 12: Optimization + EM Lecture # 1.

Transcribed by Eliot Paisley. 11/6/13

Introduction:

� We’ll spend only a short time on optimization ... this is really an EM module.

� To fit any non-standard statistical models (i.e., outside of just lm, glm, or lme), we need know a little bit about
numerical methods. We’ve already seen one example, the Metropolis-Hastings algorithm.

� For Bayes problems we use Markov-Chain Monte Carlo (MCMC) methods, while for maximum likelihood (ML)
problems we need to maximize a non-standard function. This entire module is about maximizing these ‘difficult’
likelihoods (or posteriors).

To begin, we start by looking at some common optimization algorithms; Bisection, Newton-Raphson, and Scoring.
Note: we’re actually looking at root-finding algorithms. i.e. finding x such that g(x) = 0. To maximize f (if continuous)
we can solve g(x) = f ′(x) = 0.

Bisection:

� For 1-dimensional continuous functions.

� Let g : R→ R be a continuous function on [a, b]. We want to find x∗ such that g(x∗) = 0.

� Idea: Find l and u such that g(l) · g(u) < 0, which implies that g(l) and g(u) will have different signs.

� Set c = l+u
2 , and compute g(c). If g(l) · g(c) < 0, then set u = c. Otherwise, set l = c.

� Repeat the step above.

� Pros: Easy to code, and understand. Converges in linear time. We only need continuity, not differentiability.

� Cons: Could be multiple roots. Only works in 1-dimension, doesn’t generalize nicely to higher dimensions. Doesn’t
use much information about other values. For example, if g(l) = −0.1, and g(u) = 10000, then we still select c to be
in the middle.

Newton-Raphson

� This is an iterative algorithm to solve for g(x) = 0.

� Idea: Update xt to xt+1, where xt+1 = xt + ηt.

� How to choose ηt is the question.

� We can write
g(xt+1) = g(xt + ηt) ≈ g(xt) + ηtg

′(xt) +O(η2t)

and ignoring the higher-order terms, if we set g(x) + ηtg
′(xt) = 0, then we have

ηt = − g(xt)

g′(xt)

� Algorithm:

– Pick x0. Set t = 0.

– Update xt+1 = xt − g(xt)
g′(xt)

.

– If |g(xt+1)| < ε, then stop. Otherwise, set t→ t+ 1 and update again.

� Pros: Typically fast (quadratic convergence). Works in multiple dimensions. Only needs one (or two) derivatives.

� Cons: Sensitive to the choice of x0. There could be multiple roots. We need to be able to calculate derivatives.

� If g : Rm → Rm, then ~xt+1 = ~xt − [∇g(~xt)]
−1
g(~xt)

� To maximize l(θ), we want to solve l′(θ) = 0, where θt+1 = θt − [l′′(θt)]
−1
l′(θt).

1

Rate of Convergence of a Sequence: Let x1, x2, . . . , be a sequence that converges to some value x∗. Then we say that the
sequence converges with quadratic rate if

lim
t→∞

|xt+1 − x∗|
|xt − x∗|2

= c, 0 < c <∞

Similarly, we say that a sequence converges with a linear rate if

lim
t→∞

|xt+1 − x∗|
|xt − x∗|

= c, 0 < c < 1

where if c = 1 we say the sequence has a ‘super linear’ rate of convergence.
Question: Are there algorithms that converge in cubic time?
Answer: Yes, but only for specific types of problems.

Scoring

� This is a small modification of the Newton-Raphson method, specifically for maximizing likelihoods.

� In Newton-Raphson we had θt+1 = θt − [l′′(θt)]
−1
l′(θt), where in Scoring we use θt+1 = θt − I(θt)

−1l′(θt).

� l′′(θt) is the observed Fisher information, while I(θt)
−1 = E(−l′′(θ)) is the expected Fisher information.

� Scoring is preferred to Newton-Raphson if the expected information is easier to compute than the observed (e.g. in
exponential families).

� Scoring coverges linearly.

The EM Algorithm:

� For many problems, the likelihood itself can be difficult to compute. e.g.

ηij = xTijβ + zTijγi

yij |β, γj ∼ Bin(nij , g
−1(ηij))

γi
i.i.d∼ N (0,Σ−1)

where {yi} is the data, with parameters {β,Σ}, and latent variables {γi}.
The likelihood for this model is then

p(~y|β,Σ) =

∫
p(~y, {γ}|β,Σ) dγ

=

∫ ∏
i,j

(
nij
yij

)[
g−1(ηij)

]yij [
1− g−1(ηij)

]nij−yij ·
∏
j

(2π)−p/2|Σ|−1/2 exp

{
−1

2
γTj ΣT γj

}
dγ1, . . . , dγj

= nothing nice at all

� Overall, our likelihood involves integrals that are difficult to compute.

� For these situations it’s hard to use Bisection or Newton-Raphson. Using EM we avoid directly computing the
integrals.

� Suppose we have a model with parameter θ, observed data yobs, and “missing” data ymis to maximize.

p(yobs|θ) =

∫
p(yobs, ymis|θ) dymis

here, we can use the EM algorithm.

� Define Q(θ|θ(t)) = E
[
log p(yobs, ymis|θ)|yobs, θ(t)

]
=
∫

log p(yobs, ymis|θ)p(ymis|yobs, θ(t))dymis.
Algorithm:

– Select θ(0), set t = 0.

– Set θ(t+1) = argmax
θ

Q(θ|θ(t)).

– Check convergence. If |θ
(t+1)|−|θ(t)|
|θ(t)| < ε, then stop. Otherwise, increment t→ t+ 1 and go back to the previous

step.

2

� Simple Example:
yobs|ymis ∼ N (ymis, 1)

ymis ∼ N (θ, V), V known.

Goal: maximize p(yobs|θ).

p(yobs|θ) =

∫
p(yobs, ymis|θ) dymis =

∫
p(yobs|ymis)p(ymis|θ) dymis.

Here we have

Q(θ|θ(t)) = E [p(yobs|ymis)p(ymis|θ) log]

= E

[
−1

2
(yobs − ymis)2 −

1

2
log(2π)− 1

2V
log(V)− 1

2
log(2π)− 1

2V
(ymis − θ)2

∣∣∣∣yobs, θ(t)]
= E

[
− 1

2V
(ymis − θ)2

∣∣∣∣yobs, θ(t)]

where we have ignored any term not involving θ.
To compute this expectation, we need to know p(ymis|yobs, θ(t)).

p(ymis|yobs, θ(t)) ∝ p(ymis, yobs|θ(t))

=⇒ ymis|yobs, θ(t) ∼ N

(
θ(t)

V + yobs
1
V + 1

,
1

1
V + 1

)
∼ N

(
θ(t) + V yobs

V + 1
,

V

V + 1

)
Thus,

Q(θ|θ(t)) = E

[
− 1

2V
(ymis − θ)2

∣∣∣∣yobs, θ(t)]
= − 1

2V
E

[
y2mis + θ2 − 2ymisθ

∣∣∣∣yobs, θ(t)]
= − 1

2V

(
θ2 − 2θE[ymis|yobs, θ(t)]

)
= − 1

2V

(
θ2 − 2θ

θ(t) + V yobs
V + 1

)
+ constant

So,
dQ

dθ
= − 1

2V

(
2θ − 2

θ(t) + V yobs
V + 1

)
and setting equal to 0, we arrive at

θ =
θ(t) + V yobs

V + 1
.

Algorithm:

θ(t+1) =
1

V + 1
θ(t) +

V

V + 1
yobs

yobs|ymis ∼ N (ymis, 1)

ymis ∼ N (θ, V)

and as t→∞, θ(t+1) → yobs.
This is a linear rate of convergence: 1

V+1 , with speed inversely proportional to the size of V . Note that low rates
indicate fast convergence, rates close to 1 indicate slow convergence.

3

