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Recap:

e We saw that EM can be used to maximize certain forms of complicated
likelihood.

e EM:
0D = argmaz Q(6|6W)
0

where

Q(de(t)) = E[lOg P(Y;bsa Ymis|Y;)bsa e(t))]
Z/ﬁwPW@J%M@*PO%M%mﬁ@MKm

Note: EM maximize log P(Ys|0) by expanded log-likelihood log P(Yops, Yinis|0)
where the observed data likelihood preserved
i.e.

/ P(Ype, Y| 0)dYimis = P(Yops|6)

Two key points:

e Y, ..s dos not have to correspond to "real” missing data
e The choice of Y,,;s is not unique

Example:



e Model-1:
Yvobs’(9 ~ N(@,U + 1)
Goal: find MLE for 0 (answer is Yops)
No missing data!
Consider a ”"complete” model s.t.

}/obs|ymis ~ N(Ymi57 ]-)
Ymis ~ N(Q, U)
Need to check:
/P(K)bs7Ymis|9)deis = p(}/;bs|0>

We can show (standard result) that this is true here.
Here Y,,;s is not "real” missing data.

What is we instead used a different ”complete” data model?
e Model-2:
Y:)bs|§7mis; 0 ~ N(?mzs + 67 U)
Ypis ~ N(0,1)

We can show that again:
/P(Yvobsyi\}mis’e)d?mis = P(}/;)bsw)

For this "complete” data model, the EM algorithm is:
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We have tow EMs corresponding to two ”complete” data models. Both give

same MLE, which is better?

e M-1 has linear convergence rate

e M-2 has linear convergence rate



Lower is better, depend on v.

e M-1 is know as a sufficient augmentation scheme (Y, is a sufficient
statistic for € in the ”complete” data model)

e M-2 is know as an ancillary augmentation scheme (Since ?mis does not
depend on 6)

It turns out that the EM algorithm has an important property: Monotone
convergence.
ie.

l(e(t+1)) > l(e(t))

where

l(e> - lOg P(}/obs|9)

This makes EM very stable (& popular); N-R, Bisection, Scoring etc. do not
have this property.

Proof:

Note:
P(YvobsaYmis‘e) = P(Y;)bsye)P(Ymis’Yvobsae)

= lobs(e) - lOg P(}/ob& szs|8) - lOg P<Ymis|)/ob87 9)
Integrate both sides w.r.t. P(Ynis|Yops, 0?)

lovs (0) = Q(016') + H (6]6")

where
H(9|9(t)) = —/lOg P(Ymis|}€)bs>9)P(Ymis|Y;}bsae(t))dymis

So,
Lobs (0UFD)=Lops (0) = [Q(OUFV]0M)—=Q (60| +[H (0" [6™))—H (6 ]0")))]

First term AQ is > 0 by definition of Q function. We only need to show
AH = HOTD0O) — HOD]|0D) > 0

P(sz‘sn/obs;H(t)) (t)
AH = /lOg (P(Ymis|}/:)bs’9(t+1)))P(Ymis‘}/ObS’0 )dezs
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This is the KL divergence K L(P(Ypis|Yobs, OO P(Yois|Yovs, 04H1)
= By properties of KL divergence AH > 0 with AH =0
iff.

P(YmisD/()bsa Q(H-l)) = P(Ymis|mb87 e(t))

Therefore,
lobs(g(t+1)) - lobs(e(t)) 2 0

Aside:
We can also use EM to find posterior modes not just MLE’s.

e To maximize log P(0|Yos),
Let
Quap(0]0Y) = Ellog P(0, Yonis|Yors)|Yobs, 0]

= /log P(97Ymis|}{)bs)P(Ymis‘Yz)bs>e(t))dymis

e "MAP estimate” maximize a posterior value (i.e. posterior mode)
Example:

e Probit Regression
Yi|Xi ~ Bin(1, g(X]'8))

(&

14 e
For probit regression: g(u) = ®(u), CDF of N(0,1)

Form a complete data model:

For logistic regression: g(u) =

YilZi, B ~ 1220
Z;|B ~ N(X{5,1)
Parameter: 5
Complete data: {(Y;, Z;), i —1 2,..,n}

Observed data: {(Y;),1 n}
Missing data: {(Z;),1 = ,n}



Check:
/ P(Y,. Z|8)dZ: = P(Y|3)

POG=118) = [ —erp(—5(Z ~ XIB))dzZ = 2(XTp)

/Z>O \/_

= preserves observed data log-likelihood
Let’s derive the EM algorithm for this model:

Q(010) = Ellog P(Yops, Yimis|0)|Yobs, 0]

Q(B|8Y) = Ellog P(Y, Z|B)|Y, 8]
Take the expectations, we need to know Z;|Y;, 3%

Zi|Y; = 0,89 ~ TN(X]BY, 1, (—00,0])
Zi|Y; = 1,89 ~ TN(X] B, 1,0, +00))

QUBIBY) = ~ Bl (%~ XT81Y, 8]

= Maximizer of Q(3|5®)
We can show,
Ify,=1
260 _ x50 4 (X[ 8Y)
i 1— &(—XFBW0)

fy,=0
o(X7BY)
B(—XT50)
The maximizer of Q(3|3®) w.r.t. B is seen to be the LSE of 3 when
regressing Z+tY on X.

Zi(t-I-l) — XzTB(t) +

Le.
B(t+1) _ (XTX)—IXTz(t—H)
where
Zl(t+1)
20 =1
Zn(tJrl)



E-Step: Compute Z(+1)
M-Step: Compute B¢ = (XTX)~1XT 70+



