STA250 Lecture-13 Notes

Shuo Li

November 13, 2013

Recap:

- We saw that EM can be used to maximize certain forms of complicated likelihood.
- EM:

$$
\theta^{(t+1)}=\underset{\theta}{\operatorname{argmax}} Q\left(\theta \mid \theta^{(t)}\right)
$$

where

$$
\begin{gathered}
Q\left(\theta \mid \theta^{(t)}\right)=E\left[\log P\left(Y_{o b s}, Y_{m i s} \mid Y_{o b s}, \theta^{(t)}\right)\right] \\
=\int \log P\left(Y_{o b s}, Y_{m i s} \mid \theta\right) * P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t)}\right) d Y_{m i s}
\end{gathered}
$$

Note: EM maximize $\log P\left(Y_{\text {obs }} \mid \theta\right)$ by expanded \log-likelihood $\log P\left(Y_{o b s}, Y_{m i s} \mid \theta\right)$ where the observed data likelihood preserved
i.e.

$$
\int P\left(Y_{o b s}, Y_{m i s} \mid \theta\right) d Y_{m i s}=P\left(Y_{o b s} \mid \theta\right)
$$

Two key points:

- $Y_{\text {mis }}$ dos not have to correspond to "real" missing data
- The choice of $Y_{m i s}$ is not unique

Example:

- Model-1:
$Y_{o b s} \mid \theta \sim N(\theta, v+1)$
Goal: find MLE for θ (answer is $Y_{o b s}$)
No missing data!
Consider a "complete" model s.t.

$$
\begin{gathered}
Y_{o b s} \mid Y_{m i s} \sim N\left(Y_{m i s}, 1\right) \\
Y_{m i s} \sim N(\theta, v)
\end{gathered}
$$

Need to check:

$$
\int P\left(Y_{o b s}, Y_{m i s} \mid \theta\right) d Y_{m i s}=P\left(Y_{o b s} \mid \theta\right)
$$

We can show (standard result) that this is true here.
Here $Y_{m i s}$ is not "real" missing data.

What is we instead used a different "complete" data model?

- Model-2:

$$
\begin{aligned}
Y_{o b s} \mid \widetilde{Y}_{m i s}, \theta & \sim N\left(\widetilde{Y}_{m i s}+\theta, v\right) \\
\widetilde{Y}_{m i s} & \sim N(0,1)
\end{aligned}
$$

We can show that again:

$$
\int P\left(Y_{o b s}, \widetilde{Y}_{m i s} \mid \theta\right) d \widetilde{Y}_{m i s}=P\left(Y_{o b s} \mid \theta\right)
$$

For this "complete" data model, the EM algorithm is:

$$
\theta^{(t+1)}=\left(\frac{v}{v+1}\right) \theta^{(t)}+\left(\frac{1}{v+1}\right) Y_{o b s}
$$

We have tow EMs corresponding to two "complete" data models. Both give same MLE, which is better?

- M-1 has linear convergence rate $\frac{1}{v+1}$
- M-2 has linear convergence rate $\frac{v}{v+1}$

Lower is better, depend on v.

- M-1 is know as a sufficient augmentation scheme ($Y_{\text {mis }}$ is a sufficient statistic for θ in the "complete" data model)
- M-2 is know as an ancillary augmentation scheme (Since $\widetilde{Y}_{\text {mis }}$ does not depend on θ)

It turns out that the EM algorithm has an important property: Monotone convergence.
i.e.

$$
l\left(\theta^{(t+1)}\right) \geqslant l\left(\theta^{(t)}\right)
$$

where

$$
l(\theta)=\log P\left(Y_{o b s} \mid \theta\right)
$$

This makes EM very stable (\& popular); N-R, Bisection, Scoring etc. do not have this property.

Proof:

Note:

$$
\begin{gathered}
P\left(Y_{o b s}, Y_{m i s} \mid \theta\right)=P\left(Y_{o b s} \mid \theta\right) P\left(Y_{m i s} \mid Y_{o b s}, \theta\right) \\
\Rightarrow l_{o b s}(\theta)=\log P\left(Y_{o b s}, Y_{m i s} \mid \theta\right)-\log P\left(Y_{m i s} \mid Y_{o b s}, \theta\right)
\end{gathered}
$$

Integrate both sides w.r.t. $P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t)}\right)$

$$
l_{o b s}(\theta)=Q\left(\theta \mid \theta^{(t)}\right)+H\left(\theta \mid \theta^{(t)}\right)
$$

where

$$
H\left(\theta \mid \theta^{(t)}\right)=-\int \log P\left(Y_{m i s} \mid Y_{o b s}, \theta\right) P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t)}\right) d Y_{m i s}
$$

So,
$l_{\text {obs }}\left(\theta^{(t+1)}\right)-l_{\text {obs }}\left(\theta^{(t)}\right)=\left[Q\left(\theta^{(t+1)} \mid \theta^{(t)}\right)-Q\left(\theta^{(t)} \mid \theta^{(t)}\right)\right]+\left[H\left(\theta^{(t+1)} \mid \theta^{(t)}\right)-H\left(\theta^{(t)} \mid \theta^{(t)}\right)\right]$
First term ΔQ is $\geqslant 0$ by definition of Q function. We only need to show $\Delta H=H\left(\theta^{(t+1)} \mid \theta^{(t)}\right)-H\left(\theta^{(t)} \mid \theta^{(t)}\right) \geqslant 0$

$$
\Delta H=\int \log \left(\frac{P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t)}\right)}{P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t+1)}\right)}\right) P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t)}\right) d Y_{m i s}
$$

This is the KL divergence $K L\left(P\left(Y_{\text {mis }} \mid Y_{o b s}, \theta^{(t)}\right)\right) \| P\left(Y_{\text {mis }} \mid Y_{o b s}, \theta^{(t+1)}\right)$
\Rightarrow By properties of KL divergence $\Delta H \geqslant 0$ with $\Delta H=0$
iff.

$$
P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t+1)}\right)=P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t)}\right)
$$

Therefore,

$$
l_{o b s}\left(\theta^{(t+1)}\right)-l_{o b s}\left(\theta^{(t)}\right) \geqslant 0
$$

Aside:
We can also use EM to find posterior modes not just MLE's.

- To maximize $\log P\left(\theta \mid Y_{o b s}\right)$,

Let

$$
\begin{aligned}
& Q_{M A P}\left(\theta \mid \theta^{(t)}\right)=E\left[\log P\left(\theta, Y_{m i s} \mid Y_{o b s}\right) \mid Y_{o b s}, \theta^{(t)}\right] \\
& =\int \log P\left(\theta, Y_{m i s} \mid Y_{o b s}\right) P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t)}\right) d Y_{m i s}
\end{aligned}
$$

- "MAP estimate" maximize a posterior value (i.e. posterior mode)

Example:

- Probit Regression

$$
Y_{i} \mid X_{i} \sim \operatorname{Bin}\left(1, g\left(X_{i}^{T} \beta\right)\right)
$$

For logistic regression: $g(u)=\frac{e^{u}}{1+e^{u}}$
For probit regression: $g(u)=\Phi(u), \mathrm{CDF}$ of $N(0,1)$
Form a complete data model:

$$
\begin{gathered}
Y_{i} \mid Z_{i}, \beta \sim 1_{\left\{z_{i} \geqslant 0\right\}} \\
Z_{i} \mid \beta \sim N\left(X_{i}^{T} \beta, 1\right)
\end{gathered}
$$

Parameter: β
Complete data: $\left\{\left(Y_{i}, Z_{i}\right), i=1,2, \ldots, n\right\}$
Observed data: $\left\{\left(Y_{i}\right), i=1,2, \ldots, n\right\}$
Missing data: $\left\{\left(Z_{i}\right), i=1,2, \ldots, n\right\}$

- Check:

$$
\begin{gathered}
\int P\left(Y_{i}, Z_{i} \mid \beta\right) d Z_{i}=P\left(Y_{i} \mid \beta\right) \\
P\left(Y_{i}=1 \mid \beta\right)=\int_{Z>0} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(Z-X_{i}^{T} \beta\right)^{2}\right) d Z_{i}=\Phi\left(X_{i}^{T} \beta\right)
\end{gathered}
$$

\Rightarrow preserves observed data log-likelihood
Let's derive the EM algorithm for this model:

$$
\begin{gathered}
Q\left(\theta \mid \theta^{(t)}\right)=E\left[\log P\left(Y_{o b s}, Y_{m i s} \mid \theta\right) \mid Y_{o b s}, \theta^{(t)}\right] \\
Q\left(\beta \mid \beta^{(t)}\right)=E\left[\log P(Y, Z \mid \beta) \mid Y, \beta^{(t)}\right]
\end{gathered}
$$

Take the expectations, we need to know $Z_{i} \mid Y_{i}, \beta^{(t)}$

$$
\begin{gathered}
Z_{i} \mid Y_{i}=0, \beta^{(t)} \sim T N\left(X_{i}^{T} \beta^{(t)}, 1,(-\infty, 0]\right) \\
Z_{i} \mid Y_{i}=1, \beta^{(t)} \sim T N\left(X_{i}^{T} \beta^{(t)}, 1,[0,+\infty)\right) \\
Q\left(\beta \mid \beta^{(t)}\right)=-E\left[\left.\frac{1}{2}\left(Z_{i}-X_{i}^{T} \beta\right)^{2} \right\rvert\, Y, \beta^{(t)}\right]
\end{gathered}
$$

\Rightarrow Maximizer of $Q\left(\beta \mid \beta^{(t)}\right)$
We can show,
If $Y_{i}=1$

$$
Z_{i}^{(t+1)}=X_{i}^{T} \beta^{(t)}+\frac{\Phi\left(X_{i}^{T} \beta^{(t)}\right)}{1-\Phi\left(-X_{i}^{T} \beta^{(t)}\right)}
$$

If $Y_{i}=0$

$$
Z_{i}^{(t+1)}=X_{i}^{T} \beta^{(t)}+\frac{\Phi\left(X_{i}^{T} \beta^{(t)}\right)}{\Phi\left(-X_{i}^{T} \beta^{(t)}\right)}
$$

The maximizer of $Q\left(\beta \mid \beta^{(t)}\right)$ w.r.t. β is seen to be the LSE of β when regressing $Z^{(t+1)}$ on X .
i.e.

$$
\beta^{(t+1)}=\left(X^{T} X\right)^{-1} X^{T} Z^{(t+1)}
$$

where

$$
Z^{(t+1)}=\left[\begin{array}{c}
Z_{1}^{(t+1)} \\
\vdots \\
Z_{n}^{(t+1)}
\end{array}\right]
$$

E-Step: Compute $Z^{(t+1)}$
M-Step: Compute $\beta^{(t+1)}=\left(X^{T} X\right)^{-1} X^{T} Z^{(t+1)}$

