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Recap:

• We saw that EM can be used to maximize certain forms of complicated
likelihood.

• EM:

θ(t+1) = argmax
θ

Q(θ|θ(t))

where
Q(θ|θ(t)) = E[log P (Yobs, Ymis|Yobs, θ(t))]

=

∫
log P (Yobs, Ymis|θ) ∗ P (Ymis|Yobs, θ(t))dYmis

Note: EM maximize log P (Yobs|θ) by expanded log-likelihood log P (Yobs, Ymis|θ)
where the observed data likelihood preserved
i.e. ∫

P (Yobs, Ymis|θ)dYmis = P (Yobs|θ)

Two key points:

• Ymis dos not have to correspond to ”real” missing data

• The choice of Ymis is not unique

Example:

1



• Model-1:
Yobs|θ ∼ N(θ, v + 1)
Goal: find MLE for θ (answer is Yobs)
No missing data!
Consider a ”complete” model s.t.

Yobs|Ymis ∼ N(Ymis, 1)

Ymis ∼ N(θ, v)

Need to check: ∫
P (Yobs, Ymis|θ)dYmis = P (Yobs|θ)

We can show (standard result) that this is true here.
Here Ymis is not ”real” missing data.

What is we instead used a different ”complete” data model?

• Model-2:

Yobs|Ỹmis, θ ∼ N(Ỹmis + θ, v)

Ỹmis ∼ N(0, 1)

We can show that again:∫
P (Yobs, Ỹmis|θ)dỸmis = P (Yobs|θ)

For this ”complete” data model, the EM algorithm is:

θ(t+1) = (
v

v + 1
)θ(t) + (

1

v + 1
)Yobs

We have tow EMs corresponding to two ”complete” data models. Both give
same MLE, which is better?

• M-1 has linear convergence rate
1

v + 1

• M-2 has linear convergence rate
v

v + 1
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Lower is better, depend on v.

• M-1 is know as a sufficient augmentation scheme (Ymis is a sufficient
statistic for θ in the ”complete” data model)

• M-2 is know as an ancillary augmentation scheme (Since Ỹmis does not
depend on θ)

It turns out that the EM algorithm has an important property: Monotone
convergence.
i.e.

l(θ(t+1)) > l(θ(t))

where
l(θ) = log P (Yobs|θ)

This makes EM very stable (& popular); N-R, Bisection, Scoring etc. do not
have this property.

Proof:

Note:
P (Yobs, Ymis|θ) = P (Yobs|θ)P (Ymis|Yobs, θ)

⇒ lobs(θ) = log P (Yobs, Ymis|θ)− log P (Ymis|Yobs, θ)
Integrate both sides w.r.t. P (Ymis|Yobs, θ(t))

lobs(θ) = Q(θ|θ(t)) +H(θ|θ(t))
where

H(θ|θ(t)) = −
∫
log P (Ymis|Yobs, θ)P (Ymis|Yobs, θ(t))dYmis

So,

lobs(θ
(t+1))−lobs(θ(t)) = [Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t))]+[H(θ(t+1)|θ(t))−H(θ(t)|θ(t))]

First term ∆Q is > 0 by definition of Q function. We only need to show
∆H = H(θ(t+1)|θ(t))−H(θ(t)|θ(t)) > 0

∆H =

∫
log (

P (Ymis|Yobs, θ(t))
P (Ymis|Yobs, θ(t+1))

)P (Ymis|Yobs, θ(t))dYmis
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This is the KL divergence KL(P (Ymis|Yobs, θ(t)))||P (Ymis|Yobs, θ(t+1))
⇒ By properties of KL divergence ∆H > 0 with ∆H = 0
iff.

P (Ymis|Yobs, θ(t+1)) = P (Ymis|Yobs, θ(t))

Therefore,
lobs(θ

(t+1))− lobs(θ(t)) > 0

Aside:
We can also use EM to find posterior modes not just MLE’s.

• To maximize log P (θ|Yobs),
Let

QMAP (θ|θ(t)) = E[log P (θ, Ymis|Yobs)|Yobs, θ(t)]

=

∫
log P (θ, Ymis|Yobs)P (Ymis|Yobs, θ(t))dYmis

• ”MAP estimate” maximize a posterior value (i.e. posterior mode)

Example:

• Probit Regression
Yi|Xi ∼ Bin(1, g(XT

i β))

For logistic regression: g(u) =
eu

1 + eu
For probit regression: g(u) = Φ(u), CDF of N(0, 1)
Form a complete data model:

Yi|Zi, β ∼ 1{zi>0}

Zi|β ∼ N(XT
i β, 1)

Parameter: β
Complete data: {(Yi, Zi), i = 1, 2, ..., n}
Observed data: {(Yi), i = 1, 2, ..., n}
Missing data: {(Zi), i = 1, 2, ..., n}
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• Check: ∫
P (Yi, Zi|β)dZi = P (Yi|β)

P (Yi = 1|β) =

∫
Z>0

1√
2π
exp(−1

2
(Z −XT

i β)2)dZi = Φ(XT
i β)

⇒ preserves observed data log-likelihood

Let’s derive the EM algorithm for this model:

Q(θ|θ(t)) = E[log P (Yobs, Ymis|θ)|Yobs, θ(t)]

Q(β|β(t)) = E[log P (Y, Z|β)|Y, β(t)]

Take the expectations, we need to know Zi|Yi, β(t)

Zi|Yi = 0, β(t) ∼ TN(XT
i β

(t), 1, (−∞, 0])

Zi|Yi = 1, β(t) ∼ TN(XT
i β

(t), 1, [0,+∞))

Q(β|β(t)) = −E[
1

2
(Zi −XT

i β)2|Y, β(t)]

⇒Maximizer of Q(β|β(t))
We can show,
If Yi = 1

Z
(t+1)
i = XT

i β
(t) +

Φ(XT
i β

(t))

1− Φ(−XT
i β

(t))

If Yi = 0

Z
(t+1)
i = XT

i β
(t) +

Φ(XT
i β

(t))

Φ(−XT
i β

(t))

The maximizer of Q(β|β(t)) w.r.t. β is seen to be the LSE of β when
regressing Z(t+1) on X.
i.e.

β(t+1) = (XTX)−1XTZ(t+1)

where

Z(t+1) = [

Z1
(t+1)

...

Zn
(t+1)

]
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E-Step: Compute Z(t+1)

M-Step: Compute β(t+1) = (XTX)−1XTZ(t+1)
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