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Recap: We saw that EM can be used to maximize certain forms of complicated likelihood. The algorithm is as
follows:

06 = argmgme(Gw(t)) (1)
Q(6‘|9(t)) = E[IOg[P(yobsaymis‘e)] |yobs>6(t)] (2)

Note: EM maximizes P(Yops|0) by using P(Yobs, Ymis|0), which satisfies:

/P(yob87y'mis|0)dym1ls = P(yobs|9) (3>

Two key points:
® Ynis doesn’t have to correspond to "real" missing data;
e choice of y,;s is not unique.

One example is as follows:
Model : yops|0 ~ N(0,V + 1) 4)

The goal is to find MLE for 6(the answer is y,ps). There is no missing data in this example. Consider a "complete"
model:

yobs‘ymis ~ N(ymisa ]-) (5)

First we need to check whether [ P(Yobs, Ymis|0)dymis = P(yobs|0). We can show (standard result) that this model
fulfils this equation. Here y,,,;s is not "real" missing data. The way to check this equation is to do the expansion as
follows:

/P(yobsvymiSW)dymis = /P(yobs‘ymis)P(ymis‘e)dymis (7)

The model stated here is noted as Model(1). We can also use a different "complete" data model as follows:

yobs|y7;tisa 0~ N(Z/Jm +0, V) (8>
(10)

we can demonstrate [ P(Yobs, Ymis|0)dymis = P(Yobs|0). We denote this model as Model(2).
The EM algorithm for Model(1) is:
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The EM algorithm for Model(2) is:
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Hence we have two EMs corresponding to two complete data model, both of which give the same MLE. But which is
better?

Yobs (12)

. 1
Model 1 has linear convergence rate v



Model 2 has linear convergence rate VLH
For the convergene rate, the lower, the better. Hence we choose the one with lower convergence rate as the optimimum
model. Model 1 is known as a sufficient augmentation scheme as y,,;s is a sufficient statistics for 6 in the "complete"
data model. Model 2 is known as an ancillary augmentation scheme as y,,;s doesn’t depend on 6.
It turns out that the EM algorithm has an important property: Monotone convergence:

10 > 1(6%) (13)

Where

1(8) = log P(yops|6)

This property makes EM very stable and popular. NR, bisection, scoring don’t have this property. Below is the proof
of this property.
Note P(Yobss Ymis|0) = P(Yobs|0) P(Ymis|Yobs, 0). Let 1(0) = log P(yops|f), we can get:

1(0) = log P(Yobs» Ymis|0) — IOgP(ymiSIyob57 0). (14)

Integrate both sides with respect t0 P (Ymis|Yobs, 0"). Left side = [[log P(Yobs|0)] P (Ymis|Yobs, 0")dymis. As log P(yobs|0)
is note related to Ymqs,

/[log P(yobs|9)]P(ymis‘yobS7Ht)dymis = IOg P(yobs|9) = l(0)> (]—5)

For the right side of equation (14), after integration, the first iterm in the right side is Q(0|6*). Denote the second
item after integration as H(6|6"), where:

H(0‘9t> = _/log P(ymis|yob87 Q)P(ymis‘yobm et)dymis (16)

So
l(0t+1) —1(0") = [Q(9t+1|9t> _ Q(etwt] + [H(9t+1‘9t) — H(Ht‘et)] (17)

In equation (17), on the right hand side, AQ = [Q(6"70") — Q(6|0"] is always > 0 because in the M step, we are
maximizing Q . So we only need to show AH = [H(0""|0") — H(6'|6")] >0
Here

Ymis|Yobs, 0 ) t
AH = 1 P mis|Yobs, 0°)d mis 1
/ og( ymzslyobs,ﬁ”l)) (Ymis [Yobs, 0 )dy. (18)

We know equation (18) is the KL divergence = KL [P(y7,,,is|y0bs, 0| P (Ymis|Yobs s 9”1))]. By properties of KL diver-
gence, we know AH > 0. AH = 0 if and only if P(Ymis|Yobs, 0°) = P(Ymis|Yobs, 0171).
Therefore

16 —1(6") >0 (19)

Aside: We can use EM to find posterior models, not just MLE’s.
To maximize log(0|yops), Let

Q(ewt)J\JAP = FE [P(gv ymis|yobs)‘yobsa et] (20)
= /log [P(Hv ymzs|yobs)] P(ymis|yobsa et)dymzs (21)
Example:
Probit Regression:

yilzi, 8 ~ Bin(1, g(z;" B)) (22)

For logistic regression,

et 9

9 = (23)

For probit regression,
9(p) = () (24)

Here @ is the CDF of N(0,1).
We form a complete data model:
Yilzi, 8= L0 (25)

z|B ~ N(zi" B, 1) (26)



This model could be connnected to the patient’s response to some drugs in real application.

Here the complete data is {(y;,2;),i = 1,...,n}, the parameter is 3, the observed data is {y;,4 = 1, ...,n}, the missing
data is {z;,i =1,...,n

First we need to check [ P(y;,z|8)dz = P(y;). We need Prof Baines to provide information for this demonstration.
Let’s derive the EM algorithm for this model:

Q(BI8") = E [log Py, z(B)ly, 5] (27)
To take the expectations, we need to know the distribution of z;|y;, 8
Zilyi = 0, 8" ~ TN(xiTBt, 1, [—00,0]) (28)
zilyi = 1,8" ~ TN(z;" 5',1,[0, 00]) (29)
1 n
QIS =~ |5 3 =)l (30)
Maximize Q(f5]3?).
Let (027 5)
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The maximizer of Q(3|3%) with respect to 3 is seen to be the LS estimator of 3 when regressing 2! on .

/8t+1 — (xTxfl)l,th+1 (31)
where

t+1 t+1 t+1 t+1)T (32)
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o E-step — to compute z't!

e M-step — to compute B+ = (zTa=1)2T 2t H!



