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Recap: We saw that EM can be used to maximize certain forms of complicated likelihood. The algorithm is as
follows:

θ = argmax
θ

Q(θ|θ(t)) (1)

Q(θ|θ(t)) = E[log [P (yobs, ymis|θ)] |yobs, θ(t)] (2)

Note: EM maximizes P (yobs|θ) by using P (yobs, ymis|θ), which satis�es:∫
P (yobs, ymis|θ)dymis = P (yobs|θ) (3)

Two key points:

• ymis doesn't have to correspond to "real" missing data;

• choice of ymis is not unique.

One example is as follows:
Model : yobs|θ ∼ N(θ, V + 1) (4)

The goal is to �nd MLE for θ(the answer is yobs). There is no missing data in this example. Consider a "complete"
model:

yobs|ymis ∼ N(ymis, 1) (5)

ymis ∼ N(θ, V ) (6)

First we need to check whether
∫
P (yobs, ymis|θ)dymis = P (yobs|θ). We can show (standard result) that this model

ful�ls this equation. Here ymis is not "real" missing data. The way to check this equation is to do the expansion as
follows: ∫

P (yobs, ymis|θ)dymis =

∫
P (yobs|ymis)P (ymis|θ)dymis (7)

The model stated here is noted as Model(1). We can also use a di�erent "complete" data model as follows:

yobs| ˜ymis, θ ∼ N( ˜ymis + θ, V ) (8)

˜ymis ∼ N(0, 1) (9)

(10)

we can demonstrate
∫
P (yobs, ˜ymis|θ)d ˜ymis = P (yobs|θ). We denote this model as Model(2).

The EM algorithm for Model(1) is:

θt+1 =
1

V + 1
θt +

V

V + 1
yobs (11)

The EM algorithm for Model(2) is:

θt+1 =
V

V + 1
θt +

1

V + 1
yobs (12)

Hence we have two EMs corresponding to two complete data model, both of which give the same MLE. But which is
better?

Model 1 has linear convergence rate 1
V+1
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Model 2 has linear convergence rate V
V+1

For the convergene rate, the lower, the better. Hence we choose the one with lower convergence rate as the optimimum
model. Model 1 is known as a su�cient augmentation scheme as ymis is a su�cient statistics for θ in the "complete"
data model. Model 2 is known as an ancillary augmentation scheme as ˜ymis doesn't depend on θ.
It turns out that the EM algorithm has an important property: Monotone convergence:

l(θt+1) ≥ l(θt) (13)

Where

l(θ) = logP (yobs|θ)

This property makes EM very stable and popular. NR, bisection, scoring don't have this property. Below is the proof
of this property.
Note P (yobs, ymis|θ) = P (yobs|θ)P (ymis|yobs, θ). Let l(θ) = logP (yobs|θ), we can get:

l(θ) = logP (yobs, ymis|θ)− logP (ymis|yobs, θ). (14)

Integrate both sides with respect to P (ymis|yobs, θt). Left side =
∫
[logP (yobs|θ)]P (ymis|yobs, θt)dymis. As logP (yobs|θ)

is note related to ymis, ∫
[logP (yobs|θ)]P (ymis|yobs, θt)dymis = logP (yobs|θ) = l(θ)) (15)

For the right side of equation (14), after integration, the �rst iterm in the right side is Q(θ|θt). Denote the second
item after integration as H(θ|θt), where:

H(θ|θt) = −
∫

logP (ymis|yobs, θ)P (ymis|yobs, θt)dymis (16)

So
l(θt+1)− l(θt) =

[
Q(θt+1|θt)−Q(θt|θt

]
+

[
H(θt+1|θt)−H(θt|θt)

]
(17)

In equation (17), on the right hand side, ∆Q =
[
Q(θt+1|θt)−Q(θt|θt

]
is always ≥ 0 because in the M step, we are

maximizing Q . So we only need to show ∆H =
[
H(θt+1|θt)−H(θt|θt)

]
≥ 0.

Here

∆H =

∫
log

(
p(ymis|yobs, θt)

p(ymis|yobs, θt+1)

)
P (ymis|yobs, θt)dymis (18)

We know equation (18) is the KL divergence = KL
[
P (ymis|yobs, θt||P (ymis|yobs, θt+1))

]
. By properties of KL diver-

gence, we know ∆H ≥ 0. ∆H = 0 if and only if P (ymis|yobs, θt) = P (ymis|yobs, θt+1).
Therefore

l(θt+1)− l(θt) ≥ 0 (19)

Aside: We can use EM to �nd posterior models, not just MLE's.
To maximize log(θ|yobs), Let

Q(θ|θt)MAP = E
[
P (θ, ymis|yobs)|yobs, θt

]
(20)

=

∫
log [P (θ, ymis|yobs)]P (ymis|yobs, θt)dymis (21)

Example:
Probit Regression:

yi|xi, β ∼ Bin(1, g(xi
Tβ)) (22)

For logistic regression,

g(µ) =
eµ

1 + eµ
(23)

For probit regression,

g(µ) = Φ(µ) (24)

Here Φ is the CDF of N(0,1).
We form a complete data model:

yi|zi, β = Izi≥0 (25)

zi|β ∼ N(xi
Tβ, 1) (26)
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This model could be connnected to the patient's response to some drugs in real application.
Here the complete data is {(yi, zi), i = 1, ..., n}, the parameter is β, the observed data is {yi, i = 1, ..., n}, the missing
data is {zi, i = 1, ..., n}.
First we need to check

∫
P (yi, zi|β)dzi = P (yi). We need Prof Baines to provide information for this demonstration.

Let's derive the EM algorithm for this model:

Q(β|βt) = E
[
logP (y, z|β)|y, βt

]
(27)

To take the expectations, we need to know the distribution of zi|yi, βt.

zi|yi = 0, βt ∼ TN(xi
Tβt, 1, [−∞, 0]) (28)

zi|yi = 1, βt ∼ TN(xi
Tβt, 1, [0,∞]) (29)

Q(β|βt) = −E

[
1

2

n∑
i=1

(zi − xi
Tβ)2|yi, βt

]
(30)

Maximize Q(β|βt).
Let

zi
t+1 =

 xi
Tβt +

Φ(xi
T βt)

1−Φ(−xi
Tβt)

if yi = 1

xi
Tβt − Φ(xi

T βt)
Φ(−xi

T βt)
if yi = 0

The maximizer of Q(β|βt) with respect to β is seen to be the LS estimator of β when regressing zt+1 on x.

βt+1 = (xTx−1)xT zt+1 (31)

where

zt+1 = (z1
t+1, z2

t+1, . . . , zn
t+1)T (32)

• E-step → to compute zt+1

• M-step → to compute βt+1 = (xTx−1)xT zt+1
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