STA 250 Lecture 14 — EM Module Lecture 03

Monday, November 18th

Recap: To maximize [(6|Y,ps) = log P(Yops|0), we construct,
P(Yopes Vi) 5.5 [ P(Yopes Yiial0).0¥orse = PV }9)
and use EM: 0+ = argznax Q(0|6™)
where: Q(010®)) = E[log P(Yobs, Yomis|0)|Yobs, 0]
Last time:  [(0®1D) > [(0®) (corresponding to monotone convergence)

Today:

(1) Some more theory

(2) What do when the maximization is hard

(3) What to do when it is hard to compute expectation
From the monotonicity proof, we saw that -

1(64+) - 1(90) = [Q(BD]0)) ~ QAW]B®M)] + [H(B-D]0®) ~ H(6®D|90)],

where the latter term is non-negative for any 6()

So, we just need to ensure that,
QUOEIID) 2 QB

to guarantee montone convergence.
Thus, we don’t need to maximize Q; we just need to increase it. This approach is referred
to as Generalized EM (GEM).



Convergence rate of EM:

Idea: EM gives an update - 6 (+1) = M(g(t))
Here, M is the update/mapping operator: M : RP — RP

To study convergence rate - let 8* be the MLE. Then:

M) = 0% + l%M(G)

] 109 =67+ 0(J0® - 9+ )
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which means we have a linear rate of convergence to p, the maximal eigenvalue of DM.

Idea: It can be shown that DM also has a representation as the ‘fraction of missing in-
formation’ (not covered here).

What to do when the E-step is hard:

Example: Probit regression -

We saw that,
20310, - {TN(x%(t), 1;(~00,0]), ifyi=0

TN(2zF8®,1;[0,00)), ify; =1

Suppose we did not know the conditional expectation of a truncated normal - then what do
we do? We have the following options:

1. Use Monte Carlo to simulate from N (27 5®), 1), throw away any samples outside the
range, and compute the mean

2. Simulate from N(z'®,1); flip sign if necessary and compute the mean.

3. Use inverse CDF sampling.

o).

Y;)b& e(t)) o< P(Ymi57 }/;bs

4. If independent samples are not possible, we know that, P(Y,,;s

So, can sample from Y,,;s|(Yops, 0)) using MCMC; use samples to get the desired conditional

expectations.
5. For 1-D, we can use Numerical Integration (with the Trapezoidal rule, Quadrature, etc.)



Sampling truncated Random Variables:

Let X ~ Fy. Let Z ~ X‘X e (a,b)

To sample from Z, sample from U ~ U(Fx(a), Fx (b))
Then, Z = F{'(U)

It can be shown that Z ~ X|X € (a,b)
Note: EM using a Monte Carlo E-step is called MCEM or MCMCEM (when using MCMC

in the E-step).

(Example code and path shown on projector for MCEM applied to the probit EM example
when Zi(tH) = E[Z;|Y;, 3] is computed using inverse CDF sampling)

What do to when the M-step is hard:

Suppose 6 € RP and finding Argmax Q(6]0®) is hard. Then,

0
1. Increase @ - that is, ensure that, Q(0(+D]|0®)) > Q(OM]IM) to get GEM.
2. Conditionally maximize Q(0]0(")). For example, let 6 € R2.

Set, 04 = argmax Q(6y, 65168, 657
01

Set, 851 = argmax Q8D 6,/6%7, 6)

02

Note:

e E-step is not recomputed between maximizations.

e Not guaranteed to give us the joint maximum over both ¢, and 6,

Example:

Let Yi|o, B ~ Gamma(a, 3)

Let 1 =1,...,1n = Nops + Nnis

(Some Y;s are missing - this is independent of all model components)

504

P(Y;|Ck75) = my

?716718% (yza «, 5 > O)

Q010D = & | n (alog 8- Tog T (a)) + (o - 1)2 log(y;) - 52%

Y;)bsa g(t)]



This is harder to maximize w.r.t «.
We maximize w.r.t. 5 as follows:

8@ no (TL Nobs T Nmis
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Set a = a®. Solving for % =0, we get,
na®

Nobs Oé(t)
'Z:l Yi + Ninis <5(z) )
1=

5(t+1) —

Now, to maximize w.r.t a:

Nobs

?)_g =nlog B —ny,(a) + Z; 108(Ys) + Mmis (o) = log 5O)
where, 1, () = aa;—:l (log T (a))

it 22

=0, then use Newton-Raphson
o)

2%Q
NeXta W =-n (¢1(a))
Let ol0) = a®  (here, we set j=0)
| | )
Set s = alf) + ~L9xR)_
nir(ayg)

Increment j — 7 + 1 until convergence.

Finally, set o)) = ANRs

where g(-) is g—g, the function we are seeking the root of.



