
STA 250 Lecture 14 – EM Module Lecture 03

Monday, November 18th

Recap: To maximize l(θ∣Yobs) = log P (Yobs∣θ), we construct,

P (Yobs, Ymis∣θ) s.t. ∫ P (Yobs, Ymis∣θ).dYmis = P (Yobs∣θ)

and use EM: θ(t+1) = argmax
θ

Q(θ∣θ(t))

where: Q(θ∣θ(t)) = E[log P (Yobs, Ymis∣θ)∣Yobs, θ(t)]

Last time: l(θ(t+1)) ≥ l(θ(t)) (corresponding to monotone convergence)

Today:
(1) Some more theory
(2) What do when the maximization is hard
(3) What to do when it is hard to compute expectation

From the monotonicity proof, we saw that -

l(θ(t+1)) − l(θ(t)) = [Q(θ(t+1)∣θ(t)) −Q(θ(t)∣θ(t))] + [H(θ(t+1)∣θ(t)) −H(θ(t)∣θ(t))],

where the latter term is non-negative for any θ(t)

So, we just need to ensure that,

Q(θ(t+1)∣θ(t)) ≥ Q(θ(t)∣θ(t))

to guarantee montone convergence.
Thus, we don’t need to maximize Q; we just need to increase it. This approach is referred
to as Generalized EM (GEM).

1



Convergence rate of EM:

Idea: EM gives an update -
Ð⇀
θ (t+1) =M(

Ð⇀
θ (t))

Here, M is the update/mapping operator: M ∶ Rp → Rp

To study convergence rate - let θ∗ be the MLE. Then:

M(θ(t)) = θ∗ + [ ∂
∂θM(θ)∣

θ=θ∗
] .[θ(t) − θ∗] +O(∥θ(t) − θ∗∥2)

⇒ θ(t+1) − θ∗ =M(θ(t)) − θ∗ ≃DM(θ∗).(θ(t) − θ∗)

⇒ Lim
t→∞

∥θ(t+1)−θ∗∥
∥θ(t)−θ∗∥ = ρ

which means we have a linear rate of convergence to ρ, the maximal eigenvalue of DM.

Idea: It can be shown that DM also has a representation as the ‘fraction of missing in-
formation’ (not covered here).

What to do when the E-step is hard:

Example: Probit regression -

We saw that,

Z
(t+1)
i ∣β(t), yi =

⎧⎪⎪
⎨
⎪⎪⎩

TN(xTi β
(t),1; (−∞,0]), if yi = 0

TN(xTi β
(t),1; [0,∞)), if yi = 1

Suppose we did not know the conditional expectation of a truncated normal - then what do
we do? We have the following options:

1. Use Monte Carlo to simulate from N(xTi β
(t),1), throw away any samples outside the

range, and compute the mean
2. Simulate from N(xTi β

(t),1); flip sign if necessary and compute the mean.
3. Use inverse CDF sampling.

4. If independent samples are not possible, we know that, P (Ymis∣Yobs, θ(t)) ∝ P (Ymis, Yobs∣θ(t)).

So, can sample from Ymis∣(Yobs, θ(t)) using MCMC; use samples to get the desired conditional

expectations.
5. For 1-D, we can use Numerical Integration (with the Trapezoidal rule, Quadrature, etc.)
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Sampling truncated Random Variables:

Let X ∼ FX . Let Z ∼X ∣X ∈ (a, b)

To sample from Z, sample from U ∼ U(FX(a), FX(b))
Then, Z = F −1

X (U)

It can be shown that Z ∼X ∣X ∈ (a, b)

Note: EM using a Monte Carlo E-step is called MCEM or MCMCEM (when using MCMC
in the E-step).

(Example code and path shown on projector for MCEM applied to the probit EM example

when Z
(t+1)
i = E[Zi∣Yi, β(t)] is computed using inverse CDF sampling)

What do to when the M-step is hard:

Suppose θ ∈ Rp and finding Argmax
θ

Q(θ∣θ(t)) is hard. Then,

1. Increase Q - that is, ensure that, Q(θ(t+1)∣θ(t)) ≥ Q(θ(t)∣θ(t)) to get GEM.

2. Conditionally maximize Q(θ∣θ(t)). For example, let θ ∈ R2.

Set, θ
(t+1)
1 = argmax

θ1

Q(θ1, θ
(t)
2 ∣θ

(t)
1 , θ

(t)
2 )

Set, θ
(t+1)
2 = argmax

θ2

Q(θ
(t+1)
1 , θ2∣θ

(t)
1 , θ

(t)
2 )

Note:

• E-step is not recomputed between maximizations.

• Not guaranteed to give us the joint maximum over both θ1 and θ2

Example:

Let Yi∣α,β ∼ Gamma(α,β)

Let i = 1, ..., n = nobs + nmis
(Some Yis are missing - this is independent of all model components)

P (Yi∣α,β) =
βα

Γ (α)
yα−1i e−βyi (yi, α, β > 0)

Q(θ∣θ(t)) = E
⎡
⎢
⎢
⎢
⎢
⎣

n (α logβ − log Γ (α)) + (α − 1)
n

∑
i=1

log(yi) − β
n

∑
i=1

yi

RRRRRRRRRRR

Yobs, θ
(t)

⎤
⎥
⎥
⎥
⎥
⎦
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This is harder to maximize w.r.t α.
We maximize w.r.t. β as follows:

∂Q

∂β
=
nα

β
− (

n

∑
i=1

yi +
nobs+nmis

∑
i=nobs+1

E[Yi∣Yobs, θ
(t)])

Set α = α(t). Solving for ∂Q
∂β = 0, we get,

β(t+1) =
nα(t)

nobs

∑
i=1
yi + nmis (

α(t)
β(t) )

Now, to maximize w.r.t α:

∂Q

∂α
= n logβ − nψo(α) +

nobs

∑
i=1

log(yi) + nmis (ψo(α
(t)) − logβ(t))

where, ψr(α) =
∂r+1
∂αr+1 (log Γ (α))

If
∂Q

∂α
= 0, then use Newton-Raphson

Next,
∂2Q

∂α2
= −n (ψ1(α))

Let α
(0)
NR = α(t) (here, we set j=0)

Set αj+1NR = α
(j)
NR +

g(α
(j)
NR)

nψ1(α
(j)
NR)

Increment j → j + 1 until convergence.

Finally, set α(t+1) = α∗NR,

where g(⋅) is ∂Q
∂α , the function we are seeking the root of.
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