STA 250 Lecture 14 - EM Module Lecture 03

Monday, November 18th

Recap: To maximize $l\left(\theta \mid Y_{o b s}\right)=\log P\left(Y_{o b s} \mid \theta\right)$, we construct, $P\left(Y_{o b s}, Y_{m i s} \mid \theta\right)$ s.t. $\int P\left(Y_{o b s}, Y_{m i s} \mid \theta\right) . d Y_{m i s}=P\left(Y_{o b s} \mid \theta\right)$
and use EM: $\quad \theta^{(t+1)}=\underset{\theta}{\operatorname{argmax}} Q\left(\theta \mid \theta^{(t)}\right)$
where: $Q\left(\theta \mid \theta^{(t)}\right)=\mathbb{E}\left[\log P\left(Y_{\text {obs }}, Y_{\text {mis }} \mid \theta\right) \mid Y_{\text {obs }}, \theta^{(t)}\right]$
Last time: $\quad l\left(\theta^{(t+1)}\right) \geq l\left(\theta^{(t)}\right) \quad$ (corresponding to monotone convergence)
Today:
(1) Some more theory
(2) What do when the maximization is hard
(3) What to do when it is hard to compute expectation

From the monotonicity proof, we saw that -
$l\left(\theta^{(t+1)}\right)-l\left(\theta^{(t)}\right)=\left[Q\left(\theta^{(t+1)} \mid \theta^{(t)}\right)-Q\left(\theta^{(t)} \mid \theta^{(t)}\right)\right]+\left[H\left(\theta^{(t+1)} \mid \theta^{(t)}\right)-H\left(\theta^{(t)} \mid \theta^{(t)}\right)\right]$,
where the latter term is non-negative for any $\theta^{(t)}$

So, we just need to ensure that,
$Q\left(\theta^{(t+1)} \mid \theta^{(t)}\right) \geq Q\left(\theta^{(t)} \mid \theta^{(t)}\right)$
to guarantee montone convergence.
Thus, we don't need to maximize Q; we just need to increase it. This approach is referred to as Generalized EM (GEM).

Idea: EM gives an update - $\quad \vec{\theta}^{(t+1)}=M\left(\vec{\theta}^{(t)}\right)$
Here, M is the update/mapping operator: $M: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$
To study convergence rate - let θ^{*} be the MLE. Then:
$M\left(\theta^{(t)}\right)=\theta^{*}+\left[\left.\frac{\partial}{\partial \theta} M(\theta)\right|_{\theta=\theta^{*}}\right] \cdot\left[\theta^{(t)}-\theta^{*}\right]+O\left(\left\|\theta^{(t)}-\theta^{*}\right\|^{2}\right)$
$\Rightarrow \theta^{(t+1)}-\theta^{*}=M\left(\theta^{(t)}\right)-\theta^{*} \simeq D M\left(\theta^{*}\right) \cdot\left(\theta^{(t)}-\theta^{*}\right)$
$\Rightarrow \operatorname{Lim}_{t \rightarrow \infty} \frac{\left\|\theta^{(t+1)}-\theta^{*}\right\|}{\left\|\theta^{(t)}-\theta^{*}\right\|}=\rho$
which means we have a linear rate of convergence to ρ, the maximal eigenvalue of DM.
Idea: It can be shown that DM also has a representation as the 'fraction of missing information' (not covered here).

What to do when the E-step is hard:

Example: Probit regression -
We saw that,

$$
Z_{i}^{(t+1)} \mid \beta^{(t)}, y_{i}= \begin{cases}T N\left(x_{i}^{T} \beta^{(t)}, 1 ;(-\infty, 0]\right), & \text { if } y_{i}=0 \\ T N\left(x_{i}^{T} \beta^{(t)}, 1 ;[0, \infty)\right), & \text { if } y_{i}=1\end{cases}
$$

Suppose we did not know the conditional expectation of a truncated normal - then what do we do? We have the following options:

1. Use Monte Carlo to simulate from $N\left(x_{i}^{T} \beta^{(t)}, 1\right)$, throw away any samples outside the range, and compute the mean
2. Simulate from $N\left(x_{i}^{T} \beta^{(t)}, 1\right)$; flip sign if necessary and compute the mean.
3. Use inverse CDF sampling.
4. If independent samples are not possible, we know that, $P\left(Y_{m i s} \mid Y_{o b s}, \theta^{(t)}\right) \propto P\left(Y_{m i s}, Y_{o b s} \mid \theta^{(t)}\right)$. So, can sample from $Y_{m i s} \mid\left(Y_{o b s}, \theta^{(t)}\right)$ using MCMC; use samples to get the desired conditional expectations.
5. For 1-D, we can use Numerical Integration (with the Trapezoidal rule, Quadrature, etc.)

Let $X \sim F_{X}$. Let $Z \sim X \mid X \in(a, b)$
To sample from Z, sample from $U \sim U\left(F_{X}(a), F_{X}(b)\right)$
Then, $Z=F_{X}^{-1}(U)$
It can be shown that $Z \sim X \mid X \in(a, b)$
Note: EM using a Monte Carlo E-step is called MCEM or MCMCEM (when using MCMC in the E-step).
(Example code and path shown on projector for MCEM applied to the probit EM example when $Z_{i}^{(t+1)}=\mathbb{E}\left[Z_{i} \mid Y_{i}, \beta^{(t)}\right]$ is computed using inverse CDF sampling)

What do to when the M-step is hard:
Suppose $\theta \in \mathbb{R}^{p}$ and finding $\underset{\theta}{\operatorname{Argmax}} Q\left(\theta \mid \theta^{(t)}\right)$ is hard. Then,

1. Increase Q - that is, ensure that, $Q\left(\theta^{(t+1)} \mid \theta^{(t)}\right) \geq Q\left(\theta^{(t)} \mid \theta^{(t)}\right)$ to get GEM.
2. Conditionally maximize $Q\left(\theta \mid \theta^{(t)}\right)$. For example, let $\theta \in \mathbb{R}^{2}$.

Set, $\theta_{1}^{(t+1)}=\underset{\theta_{1}}{\operatorname{argmax}} Q\left(\theta_{1}, \theta_{2}^{(t)} \mid \theta_{1}^{(t)}, \theta_{2}^{(t)}\right)$
Set, $\theta_{2}^{(t+1)}=\underset{\theta_{2}}{\operatorname{argmax}} Q\left(\theta_{1}^{(t+1)}, \theta_{2} \mid \theta_{1}^{(t)}, \theta_{2}^{(t)}\right)$
Note:

- E-step is not recomputed between maximizations.
- Not guaranteed to give us the joint maximum over both θ_{1} and θ_{2}

Example:

Let $Y_{i} \mid \alpha, \beta \sim \operatorname{Gamma}(\alpha, \beta)$
Let $i=1, \ldots, n=n_{\text {obs }}+n_{\text {mis }}$
(Some $Y_{i} \mathrm{~S}$ are missing - this is independent of all model components)

$$
\begin{aligned}
P\left(Y_{i} \mid \alpha, \beta\right) & =\frac{\beta^{\alpha}}{\Gamma(\alpha)} y_{i}^{\alpha-1} e^{-\beta y_{i}} \quad\left(y_{i}, \alpha, \beta>0\right) \\
Q\left(\theta \mid \theta^{(t)}\right) & =\mathbb{E}\left[n(\alpha \log \beta-\log \Gamma(\alpha))+(\alpha-1) \sum_{i=1}^{n} \log \left(y_{i}\right)-\beta \sum_{i=1}^{n} y_{i} \mid Y_{o b s}, \theta^{(t)}\right]
\end{aligned}
$$

This is harder to maximize w.r.t α.
We maximize w.r.t. β as follows:

$$
\frac{\partial Q}{\partial \beta}=\frac{n \alpha}{\beta}-\left(\sum_{i=1}^{n} y_{i}+\sum_{i=n_{o b s+1}}^{n_{o b s}+n_{m i s}} \mathbb{E}\left[Y_{i} \mid Y_{o b s}, \theta^{(t)}\right]\right)
$$

Set $\alpha=\alpha^{(t)}$. Solving for $\frac{\partial Q}{\partial \beta}=0$, we get,

$$
\beta^{(t+1)}=\frac{n \alpha^{(t)}}{\sum_{i=1}^{n_{\text {obs }}} y_{i}+n_{\text {mis }}\left(\frac{\alpha^{(t)}}{\beta^{(t)}}\right)}
$$

Now, to maximize w.r.t α :

$$
\frac{\partial Q}{\partial \alpha}=n \log \beta-n \psi_{o}(\alpha)+\sum_{i=1}^{n_{o b s}} \log \left(y_{i}\right)+n_{m i s}\left(\psi_{o}\left(\alpha^{(t)}\right)-\log \beta^{(t)}\right)
$$

where, $\psi_{r}(\alpha)=\frac{\partial^{r+1}}{\partial \alpha^{r+1}}(\log \Gamma(\alpha))$

$$
\begin{aligned}
\text { If } \frac{\partial Q}{\partial \alpha} & =0, \text { then use Newton-Raphson } \\
\text { Next, } \frac{\partial^{2} Q}{\partial \alpha^{2}} & =-n\left(\psi_{1}(\alpha)\right) \\
\text { Let } \alpha_{N R}^{(0)} & =\alpha^{(t)} \quad(\text { here, we set } \mathrm{j}=0) \\
\text { Set } \alpha_{N R}^{j+1} & =\alpha_{N R}^{(j)}+\frac{g\left(\alpha_{N R}^{(j)}\right)}{n \psi_{1}\left(\alpha_{N R}^{(j)}\right)}
\end{aligned}
$$

Increment $j \rightarrow j+1$ until convergence.

Finally, set $\alpha^{(t+1)}=\alpha_{N R}^{*}$,
where $g(\cdot)$ is $\frac{\partial Q}{\partial \alpha}$, the function we are seeking the root of.

