STA250 Lecture 14

November 18th, 2013
 s.t. $\int P\left(y_{o b s}, y_{m i s} \mid \theta\right) d y_{m i s}=P\left(y_{o b s} \mid \theta\right)$ and use EM:

$$
\theta^{(t+1)}=\underset{\theta}{\operatorname{argmax}} Q\left(\theta \mid \theta^{(t)}\right),
$$

where $Q\left(\theta \mid \theta^{(t)}\right)=E\left[\log P\left(y_{o b s}, y_{m i s} \mid \theta\right) \mid y_{o b s}, \theta^{(t)}\right]$
Last time: $l\left(\theta^{(t+1)}\right) \geq l\left(\theta^{(t)}\right)$ [monotone convergence]
Today:

1. A bit more theory
2. What to do when maximization is hard
3. What to do when the expectation is hard to compute

Note: From the proof for monotonicity:
$0 \leq l\left(\theta^{(t+1)}\right)-l\left(\theta^{(t)}\right)=\left[Q\left(\theta^{(t+1)} \mid \theta^{(t)}\right)-Q\left(\theta^{(t)} \mid \theta^{(t)}\right)\right]+\left[H\left(\theta^{(t+1)} \mid \theta^{(t)}\right)-H\left(\theta^{(t)} \mid \theta^{(t)}\right)\right]$.

Since $H\left(\theta^{(t+1)} \mid \theta^{(t)}\right) \geq H\left(\theta^{(t)} \mid \theta^{(t)}\right)$ always holds, one can obtain $l\left(\theta^{(t+1)}\right)-$ $l\left(\theta^{(t)}\right)$ as long as $Q\left(\theta^{(t+1)} \mid \theta^{(t)}\right) \geq Q\left(\theta^{(t)} \mid \theta^{(t)}\right)$, i.e., we still get monotone convergence! This suggests that we don't need to maximize Q, but rather simply increase it.

This is called Generalized EM (GEM).
Convergence rate of EM: idea: EM gives an update $\theta^{(t+1)}=M\left(\theta^{(t)}\right)$, i.e., a function of $\theta^{(t)}$. Here M is the update mapping/operator, where $\theta \in \mathrm{R}^{p}$, $M: \mathrm{R}^{p} \rightarrow \mathrm{R}^{p}$.

To study convergence rate, let θ_{*} be the MLE, then:

$$
\left(\text { near } \theta_{*}\right) \quad M\left(\theta^{(t)}\right)=\theta^{*}+\left.\left(\theta^{(t)}-\theta_{*}\right) \frac{\partial}{\partial \theta} M(\theta)\right|_{\theta=\theta_{*}}+o\left(\left\|\theta^{(t)}-\theta_{*}\right\|^{2}\right)
$$

We see:

$$
\begin{aligned}
\theta^{(t+1)}-\theta_{*} & =M\left(\theta^{(t)}\right)-\theta_{*} \\
& \approx \operatorname{DM}\left(\theta_{*}\right) \times\left(\theta^{(t)}-\theta_{*}\right),
\end{aligned}
$$

then we see that:

$$
\lim _{t \rightarrow \infty} \frac{\left\|\theta^{(t+1)}-\theta_{*}\right\|}{\left\|\theta^{(t)}-\theta_{*}\right\|}=\rho
$$

where ρ is the maximal eigenvalue of DM .
Aside: It can also be shown that DM has a representation as the 'fraction of missing information'.

When the E-step is hard:

example:[Probit regression]
We saw that $Z_{i}^{(t+1)} \left\lvert\,\left(\beta^{(t+1)}, y_{i}\right)=\left\{\begin{array}{c}T N\left(X_{i}^{T} \beta^{(t)}, 1 ;(-\infty, 0]\right) \text { if } y_{i}=0 \\ T N\left(X_{i}^{T} \beta^{(t)}, 1 ;[0, \infty)\right) \text { if } y_{i}=1\end{array}\right.$. \right.
Suppose we didn't know the expected value of a truncated normal, what could we do?

Monte Carlo :

1. Simulate from $N\left(X_{i}^{T} \beta^{(t)}, 1\right)$, then throw away any samples outside the range and compute the mean.
2. Simulate from $N\left(X_{i}^{T} \beta^{(t)}, 1\right)$, and flip sign if needed (works only for truncation at 0).
3. Inverse-CDF sampling
4. Rejection sampling
5. Sample from $p\left(y_{\text {mis }} \mid y_{\text {obs }}, \theta^{(t)}\right)$ using MCMC, and use samples to approximate the desired conditional expectation.

Sampling truncated r.v.'s: (Monte Carlo method 3 (above))

Let $X \sim F_{x}, Z \sim X \mid X \in(a, b)$, to sample from Z :

$$
U \sim \mathrm{U}\left(F_{x}(a), F_{x}(b)\right)
$$

Let $Z=F_{x}^{-1}(U)$, then we can show that $Z \sim X \mid X \in(a, b)$. Note that in general this method works if you can compute $F_{x}^{-1}, F_{x}(a), F_{y}(b)$ stably, which is not always the case.

Numerical integration $\left\{\begin{array}{cc}\text { Trapezadal } & \text { usually restricted to univariate } \\ \text { Quadrature } & \text { or lower dimensional settings }\end{array}\right.$
EM using a Monte Carlo E-step (as Monte Carlo method 4 listed above) is called MCEM (or MCMCEM).

Let's see MCEM for the Probit EM example where $Z_{i}^{(t+1)}=E\left[Z_{i} \mid y_{i}, \beta^{(t)}\right]$ is computed using inverse CDF sampling method.

Remark: MCEM can't achieve monotone increasing property of EM, it only produces an approximate version of Q.

It is trickier to decide the convergence criterion for MCEM. See Levine \& Casella (2001) on webpage for more on MCEM.

When the M-step is hard

Suppose $\theta \in \mathrm{R}^{p}$, and finding $\operatorname{argmax}_{\theta} Q\left(\theta \mid \theta^{(t)}\right)$ is hard, what to do?
-Option 1: Just increase Q (i.e., let $Q\left(\theta^{(t+1)} \mid \theta^{(t)}\right) \geq Q\left(\theta^{(t)} \mid \theta^{(t)}\right)$ and we get a GEM
-Option 2: Conditionally maximize $Q\left(\theta \mid \theta^{(t)}\right)$,i.e., e.g., $\theta \in \mathrm{R}^{2}, \theta=\left(\theta_{1}, \theta_{2}\right)^{T}$, set

$$
\begin{gathered}
\theta_{1}^{(t+1)}=\underset{\theta_{1}}{\operatorname{argmax}} Q\left(\left(\theta_{1}, \theta_{2}^{(t)}\right) \mid\left(\theta_{1}^{(t)}, \theta_{2}^{(t)}\right)\right) \\
\theta_{2}^{(t+1)}=\underset{\theta_{1}}{\operatorname{argmax}} Q\left(\left(\theta_{1}^{(t+1)}, \theta_{2}\right) \mid\left(\theta_{1}^{(t)}, \theta_{2}^{(t)}\right)\right)
\end{gathered}
$$

Note: the E-step is not re-computed between the maximizations.
See: Meng \& Rubin(1993) for ECM + convergence properties.
example: $y_{i} \mid \alpha, \beta \sim \operatorname{Gamma}(\alpha, \beta), i=1,2, \ldots, n_{\text {obs }}+n_{\text {mis }}=n$. Denote $\theta=\overline{(\alpha, \beta)}$.

Some $y_{i}^{\prime} s$ are missing (assuming missingness is independent of all model components - to make things simple)

$$
\begin{gathered}
P\left(y_{i} \mid \alpha, \beta\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} y_{i}^{\alpha-1} e^{-\beta y_{i}}\left(y_{i}, \alpha, \beta>0\right) \\
Q\left(\theta \mid \theta^{(t)}\right)=E\left[n(\alpha \log \beta-\log \Gamma(\alpha))+(\alpha-1) \sum_{i=1}^{n} \log y_{i}-\beta \sum_{i=1}^{n} y_{i} \mid y_{\mathrm{obs}, \theta^{(t)}}\right] \\
\frac{\partial Q}{\partial \beta}=\frac{n \alpha}{\beta}-\left(\sum_{i=1}^{n_{\text {obs }}} y_{i}+\sum_{i=n_{\text {obs }+1}}^{n_{\text {obs }}+n_{\mathrm{mis}}} E\left[y_{i} \mid y_{\mathrm{obs}}, \theta^{(t)}\right]\right)
\end{gathered}
$$

Set $\alpha=\alpha^{(t)}$, solving for $\frac{\alpha Q}{\alpha \beta}=0$, one gets:

$$
\beta^{(t+1)}=n \alpha^{(t)} /\left(\sum_{i=1}^{n_{\mathrm{obs}}} y_{i}+n_{\mathrm{mis}} \frac{\alpha^{(t)}}{\beta^{(t)}}\right) .
$$

To maximize w.r.t α :

$$
\frac{\partial Q}{\partial \alpha}=n \log \beta-n \Psi_{0}(\alpha)+\left[\sum_{i=1}^{n_{\mathrm{obs}}} \log y_{i}+n_{\mathrm{mis}}\left(\Psi_{0}\left(\alpha^{(t)}-\log \left(\beta^{(t)}\right)\right)\right]=g(\alpha),\right.
$$

where $\Psi_{r}(\alpha)=\frac{\partial^{r+1}}{\partial \alpha^{r+1}} \log \Gamma(\alpha)$.
FACT: $y \sim \operatorname{Gamma}(\alpha, \beta), E[\log y]=\Psi_{0}(\alpha)-\log \beta$
Set $\frac{\partial Q}{\partial \alpha}=0$, use Newton-Raphson (NR), $\frac{\partial^{2} Q}{\partial \alpha^{2}}=-n \Psi_{1}(\alpha)$.
Use NR: Let $\alpha_{\mathrm{NR}}^{(0)}=\alpha^{(t))}$, set $j=0$
set $\alpha_{\mathrm{NR}}^{(j+1)}=\alpha_{\mathrm{NR}}^{(j)}+\frac{g\left(\alpha_{\mathrm{NR}}^{(j)}\right)}{n \Psi_{1}\left(\alpha_{\mathrm{NR}}^{(j)}\right)}$, increment $j \rightarrow j+1$ until convergence.
Set $\alpha^{(t+1)}=\alpha_{\mathrm{NR}}^{*}-$ final value from NR.

