
STA250 Lecture 14

November 18th, 2013

Recap: To maximize l(θ|yobs) = logP (yobs|θ), we construct P (yobs, ymis|θ),
s.t.

∫
P (yobs, ymis|θ)dymis = P (yobs|θ) and use EM:

θ(t+1) = argmax
θ
Q(θ|θ(t)),

where Q(θ|θ(t)) = E[logP (yobs, ymis|θ)|yobs, θ(t)]

Last time: l(θ(t+1)) ≥ l(θ(t)) [monotone convergence]
Today:

1. A bit more theory

2. What to do when maximization is hard

3. What to do when the expectation is hard to compute

Note: From the proof for monotonicity:

0 ≤ l(θ(t+1))−l(θ(t)) = [Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t))]+[H(θ(t+1)|θ(t))−H(θ(t)|θ(t))].

Since H(θ(t+1)|θ(t)) ≥ H(θ(t)|θ(t)) always holds, one can obtain l(θ(t+1)) −
l(θ(t)) as long as Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)), i.e., we still get monotone con-
vergence! This suggests that we don’t need to maximize Q, but rather simply
increase it.

This is called Generalized EM (GEM).

Convergence rate of EM: idea: EM gives an update θ(t+1) = M(θ(t)),

i.e., a function of θ(t). HereM is the update mapping/operator, where θ ∈ Rp,
M : Rp → Rp.
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To study convergence rate, let θ∗ be the MLE, then:

(near θ∗) M(θ(t)) = θ∗ + (θ(t) − θ∗)
∂

∂θ
M(θ)|θ=θ∗ + o(||θ(t) − θ∗||2)

We see:

θ(t+1) − θ∗ = M(θ(t))− θ∗
≈ DM(θ∗)× (θ(t) − θ∗),

then we see that:

lim
t→∞

||θ(t+1) − θ∗||
||θ(t) − θ∗||

= ρ,

where ρ is the maximal eigenvalue of DM.
Aside: It can also be shown that DM has a representation as the ‘fraction

of missing information’.

When the E-step is hard:
example:[Probit regression]

We saw that Z
(t+1)
i |(β(t+1), yi) =

{
TN(XT

i β
(t), 1; (−∞, 0]) if yi = 0

TN(XT
i β

(t), 1; [0,∞)) if yi = 1
.

Suppose we didn’t know the expected value of a truncated normal, what
could we do?

Monte Carlo :

1. Simulate from N(XT
i β

(t), 1), then throw away any samples outside the
range and compute the mean.

2. Simulate from N(XT
i β

(t), 1), and flip sign if needed (works only for
truncation at 0).

3. Inverse-CDF sampling

4. Rejection sampling

5. Sample from p(ymis|yobs, θ
(t)) using MCMC, and use samples to approx-

imate the desired conditional expectation.
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Sampling truncated r.v.’s: (Monte Carlo method 3 (above))

Let X ∼ Fx, Z ∼ X|X ∈ (a, b), to sample from Z:

U ∼ U(Fx(a), Fx(b))

Let Z = F−1
x (U), then we can show that Z ∼ X|X ∈ (a, b). Note that

in general this method works if you can compute F−1
x , Fx(a), Fy(b) stably,

which is not always the case.

Numerical integration

{
Trapezadal usually restricted to univariate
Quadrature or lower dimensional settings

EM using a Monte Carlo E-step (as Monte Carlo method 4 listed above)
is called MCEM (or MCMCEM).

Let’s see MCEM for the Probit EM example where Z
(t+1)
i = E[Zi|yi, β(t)]

is computed using inverse CDF sampling method.

Remark: MCEM can’t achieve monotone increasing property of EM, it
only produces an approximate version of Q.

It is trickier to decide the convergence criterion for MCEM. See Levine
& Casella (2001) on webpage for more on MCEM.

When the M-step is hard

Suppose θ ∈ Rp, and finding argmaxθQ(θ|θ(t)) is hard, what to do?
–Option 1: Just increase Q (i.e., let Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)) and we

get a GEM
–Option 2: Conditionally maximize Q(θ|θ(t)),i.e.,
e.g., θ ∈ R2, θ = (θ1, θ2)T , set

θ
(t+1)
1 = argmax

θ1
Q
(
(θ1, θ

(t)
2 )|(θ(t)

1 , θ
(t)
2 )
)

θ
(t+1)
2 = argmax

θ1
Q
(
(θ

(t+1)
1 , θ2)|(θ(t)

1 , θ
(t)
2 )
)

Note: the E-step is not re-computed between the maximizations.
See: Meng & Rubin(1993) for ECM + convergence properties.

example: yi|α, β ∼ Gamma(α, β), i = 1, 2, . . ., nobs + nmis = n. Denote
θ = (α, β).

Some y′is are missing (assuming missingness is independent of all model
components – to make things simple)
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P (yi|α, β) =
βα

Γ(α)
yα−1
i e−βyi(yi, α, β > 0)

Q(θ|θ(t)) = E[n(α log β − log Γ(α)) + (α− 1)
n∑
i=1

log yi − β
n∑
i=1

yi|yobs,θ(t) ]

∂Q

∂β
=
nα

β
−
( nobs∑
i=1

yi +

nobs+nmis∑
i=nobs+1

E[yi|yobs, θ
(t)]
)

Set α = α(t), solving for αQ
αβ

= 0, one gets:

β(t+1) = nα(t)/
( nobs∑
i=1

yi + nmis
α(t)

β(t)

)
.

To maximize w.r.t α:

∂Q

∂α
= n log β − nΨ0(α) + [

nobs∑
i=1

log yi + nmis

(
Ψ0(α(t) − log(β(t))

)
] = g(α),

where Ψr(α) = ∂r+1

∂αr+1 log Γ(α).

FACT: y ∼ Gamma(α, β), E[log y] = Ψ0(α)− log β

Set ∂Q
∂α

= 0, use Newton-Raphson (NR), ∂2Q
∂α2 = −nΨ1(α).

Use NR: Let α
(0)
NR = α(t)), set j = 0

set α
(j+1)
NR = α

(j)
NR +

g(α
(j)
NR)

nΨ1(α
(j)
NR)

, increment j → j + 1 until convergence.

Set α(t+1) = α∗NR – final value from NR.
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