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Recap

Last time we saw strategies to deal with ”complicated” EM applications (i.e. when the E-step
and/or M-step are hard).

Speeding up EM

Example:

yobs|ymis ∼ N(ymis, 1)

ymis|θ ∼ N(θ, v)

”sufficient augmentation” (SA): θ(t+1) = θ(t)+vyobs
v+1 , rate of convergence = 1

v+1 . We also saw the
ancillary augmentation (AA)

yobs|ymis ∼ N(ymis + θ, 1)

ymis|θ ∼ N(0, v)

AAEM: θ(t+1) = θ(t)v+yobs
v+1 . Rate of convergence v

v+1 .

So the two algorithms have ”opposite” performance oas v chanages. If v is unknown we can derive
EM’s for SA & AA and have similar performance to when v is known. For a given problem how
do we decide whether to use the SA or AA?

- could code both and see which converges faster.

One idea would be to ”alternate” updates according to the SA & AA. i.e. compute

θ(t+0.5) =
θ(t) + vyobs
v + 1

(SA)

θ(t+1) =
θ(t+0.5)v + yobs

v + 1
(AA)

i.e. θ(t+1) = MAA(MSA(θ(t))). Note: computation time of the two algorithms may not be equal.

Pros:
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• Avoids the need to select one of the algorithms

Cons:

• Do no better than the best of the two algorithms, no worse than the worst of the tow algo-
rithms

• Need to implement both algorithms

It turns out there is a way to ”combine” two EM’s into a single improved update that utilizes ”joint
information” contained in the 2 EM’s.

Consider E-step in AA: ỹ
(t)
mis = E[ỹmis|yobs, θ(t)]

M-step in AA: θ(t+0.5) = yobs − ỹmis ( θ
(t)v+ỹobs
v+1 )

ymis = H(ỹmis, θ) = ỹmis + θ

Mappings between SA & AA: ymis = ỹmis + θ (or ỹmis = ymis − θ)

”E-step in SA”:

y
(t+0.5)
mis = E[E[ymis|yobs, θ(0.5), ỹmis]|yobs, θ(t)]

where the expectation is with respect to f(ỹmis, θ
(t+0.5)) = p(ymis|yobs, θ(t+0.5), ỹmis). Hence

y
(t+0.5)
mis = E[ỹmis + θ(t+0.5)|yobs, θ(t)]

= θ(t+0.5) + E[ỹmis|yobs, θ(t)]︸ ︷︷ ︸
E-step in AA

”M-step in SA”:

θ(t+1) = y
(t+0.5)
mis = θ(t+0.5) + ỹ

(t)
mis = yobs − ỹ

(t)
mis + ỹ

(t)
mis = yobs

=⇒ θ(t+1) = yobs converge in one iteration!

We can formalize this as follows:

Define QI = EA2[EA1[log pA2(yobs, ymis|θ)|yobs, ỹmis, θ = GA2(θ
(t))]|yobs, θ(t)].

Set θ(t+1) = arg minQI(θ|θ(t) where A1 is an augmentation scheme with missing data ymis, A2 and
GA2(θ

(t) is the value from running one iteration of EM in the A2 regime.

The algorithm can be summarized as follows:

1. Run one iteration of A2-EM to obtain GA2(θ
(t))

2. Write down Q-function of the A1-EM

3. Replace ymis with ymis = H(ỹmis, θ
(t+0.5))

4. Now the Q function has expectations w. r. t. ỹmis, so compute them (i.e. E-step in A2-EM

2



5. Find maximizer.

Example: A2 = AA and A1 = SA

pSA(yobs, ymis|θ) = p(yobs|ymis)p(ymis|θ)

=⇒ log pSA(yobs, ymis|θ) = −1

2
(yobs − ymis)2 −

1

2v
(ymis − θ)2

QI(θ|θ(t)) = EAA[ESA[log pSA(yobs, ymis|θ)|yobs, ỹmis, θ = GAA(θ(t))]|yobs, θ(t)]

= EAA[ESA[−1

2
(ymis − θ)2|yobs, ỹmis, θ = GAA(θ(t))]|yobs, θ(t)] + some constant (not dependent on θ)

θ(t+1) = EAA[ESA[ymis|yobs, ỹmis, GAA(θ(t))]|yobs, θ(t)]
= EAA[ỹmis +GAA(θ(t))|yobs, θ(t)]
= GAA(θ(t)) + EAA[ỹmis|yobs, θ(t)]

=
θ(t)v + yobs
v + 1

+ EAA[ỹmis|yobs, θ(t)]

For AA we have:

p(yobs, ỹmis|θ) ∝ exp{−1

2
(yobs − ỹmis − θ)2 −

1

2v
ỹmis}

=⇒ p(ỹmis|yobs, θ) ∝ exp{−1

2
ỹ2mis(1 +

1

v
) + ỹmis(yobs − θ)}

and

ỹmis|yobs, θ(t) ∼ N((1 +
1

v
)−1(ymis − θ(t)), (1 +

1

v
)−1) = N(

v

v + 1
(ymis − θ(t)),

v

v + 1
)

So θ(t+1) = ( v
v+1)θ(t) + ( 1

v+1)yobs + ( v
v+1)yobs − ( v

v+1)θ(t) = yobs

Notes about the interwoven EM algorithm (IEM)

• Generally requires no more computation (often less) than the two separate EM’s.

• Convergence rate is generally much better than the best convergence rate of the two EM’s.
[Key: minimize ”correlation” between the two schemes; using an SA & AA turns out to be a
great way to do this.]

• IEM preserves monotone convergence and all convergence properties of EM.

How to construct SA/AA pairs?

Hierarchical models are usually written as SA’s

3



Example:

yi|λi ∼ Pois(λ)

λi|α, β ∼ Gamma(α, β)

In this case to form (α̂, β̂) with yobs = ȳ, ȳmis = λ̄, θ = (α, β) is an SA.

How to construct an AA?

Transform ỹmis = H(ymis, θ) so that ỹmis doesn’t depend on θ.

ymis|θ ∼ N(θ, v)

H−1(ymis, θ) =⇒ ỹmis = (ymis − θ)/v1/2 =⇒ ỹmis ∼ N(0, 1)

One recipe to obtain AA’s for location-scale families is to recenter and rescale. What if we don’t
have a location-scale family? Apply CDF transformation! (trickier for multivariate settings)

Set ỹmis = F (λ, α, β)

yobs|ỹmis, α, β ∼ Pois(F−1(ỹmis, α, β))
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