STA250 Lecture 15 Notes

Chia-Tung Kuo

November 20, 2013

Recap

Last time we saw strategies to deal with "complicated" EM applications (i.e. when the E-step and/or M-step are hard).

Speeding up EM

Example:

$$
\begin{aligned}
& y_{o b s} \mid y_{m i s} \sim N\left(y_{m i s}, 1\right) \\
& y_{m i s} \mid \theta \sim N(\theta, v)
\end{aligned}
$$

"sufficient augmentation" (SA): $\theta^{(t+1)}=\frac{\theta^{(t)}+v y_{\text {obs }}}{v+1}$, rate of convergence $=\frac{1}{v+1}$. We also saw the ancillary augmentation (AA)

$$
\begin{aligned}
& y_{o b s} \mid y_{m i s} \sim N\left(y_{m i s}+\theta, 1\right) \\
& y_{m i s} \mid \theta \sim N(0, v)
\end{aligned}
$$

AAEM: $\theta^{(t+1)}=\frac{\theta^{(t)} v+y_{o b s}}{v+1}$. Rate of convergence $\frac{v}{v+1}$.
So the two algorithms have "opposite" performance oas v chanages. If v is unknown we can derive EM's for SA \& AA and have similar performance to when v is known. For a given problem how do we decide whether to use the SA or AA?

- could code both and see which converges faster.

One idea would be to "alternate" updates according to the SA \& AA. i.e. compute

$$
\begin{align*}
& \theta^{(t+0.5)}=\frac{\theta^{(t)}+v y_{o b s}}{v+1} \tag{SA}\\
& \theta^{(t+1)}=\frac{\theta^{(t+0.5)} v+y_{o b s}}{v+1} \tag{AA}
\end{align*}
$$

i.e. $\theta^{(t+1)}=M_{A A}\left(M_{S A}\left(\theta^{(t)}\right)\right)$. Note: computation time of the two algorithms may not be equal.

Pros:

- Avoids the need to select one of the algorithms

Cons:

- Do no better than the best of the two algorithms, no worse than the worst of the tow algorithms
- Need to implement both algorithms

It turns out there is a way to "combine" two EM's into a single improved update that utilizes "joint information" contained in the 2 EM's.
Consider E-step in AA: $\tilde{y}_{\text {mis }}^{(t)}=\mathbb{E}\left[\tilde{y}_{\text {mis }} \mid y_{o b s}, \theta^{(t)}\right]$
M-step in AA: $\theta^{(t+0.5)}=y_{o b s}-\tilde{y}_{\text {mis }} \quad\left(\frac{\theta^{(t)} v+\tilde{y}_{o b s}}{v+1}\right)$
$y_{\text {mis }}=H\left(\tilde{y}_{\text {mis }}, \theta\right)=\tilde{y}_{m i s}+\theta$
Mappings between SA \& AA: $y_{m i s}=\tilde{y}_{m i s}+\theta\left(\right.$ or $\left.\tilde{y}_{m i s}=y_{m i s}-\theta\right)$
"E-step in SA":

$$
y_{m i s}^{(t+0.5)}=\mathbb{E}\left[\mathbb{E}\left[y_{m i s} \mid y_{o b s}, \theta^{(0.5)}, \tilde{y}_{m i s}\right] \mid y_{o b s}, \theta^{(t)}\right]
$$

where the expectation is with respect to $f\left(\tilde{y}_{m i s}, \theta^{(t+0.5)}\right)=p\left(y_{m i s} \mid y_{o b s}, \theta^{(t+0.5)}, \tilde{y}_{m i s}\right)$. Hence

$$
\begin{aligned}
y_{m i s}^{(t+0.5)} & =\mathbb{E}\left[\tilde{y}_{m i s}+\theta^{(t+0.5)} \mid y_{\text {obs }}, \theta^{(t)}\right] \\
& =\theta^{(t+0.5)}+\underbrace{\mathbb{E}\left[\tilde{y}_{\text {mis }} \mid y_{\text {oos }}, \theta^{(t)}\right]}_{\text {E-step in AA }}
\end{aligned}
$$

"M-step in SA":

$$
\begin{aligned}
\theta^{(t+1)} & =y_{m i s}^{(t+0.5)}=\theta^{(t+0.5)}+\tilde{y}_{m i s}^{(t)}=y_{o b s}-\tilde{y}_{m i s}^{(t)}+\tilde{y}_{m i s}^{(t)}=y_{o b s} \\
\Longrightarrow \theta^{(t+1)} & =y_{o b s} \quad \text { converge in one iteration! }
\end{aligned}
$$

We can formalize this as follows:
Define $Q_{I}=\mathbb{E}_{A 2}\left[\mathbb{E}_{A 1}\left[\log p_{A 2}\left(y_{o b s}, y_{m i s} \mid \theta\right) \mid y_{o b s}, \tilde{y}_{m i s}, \theta=G_{A 2}\left(\theta^{(t)}\right)\right] \mid y_{o b s}, \theta^{(t)}\right]$.
Set $\theta^{(t+1)}=\arg \min Q_{I}\left(\theta \mid \theta^{(t)}\right.$ where $A 1$ is an augmentation scheme with missing data $y_{\text {mis }}, A 2$ and $G_{A 2}\left(\theta^{(t)}\right.$ is the value from running one iteration of EM in the $A 2$ regime.

The algorithm can be summarized as follows:

1. Run one iteration of $A 2$-EM to obtain $G_{A 2}\left(\theta^{(t)}\right)$
2. Write down Q -function of the $A 1-\mathrm{EM}$
3. Replace $y_{\text {mis }}$ with $y_{\text {mis }}=H\left(\tilde{y}_{m i s}, \theta^{(t+0.5)}\right)$
4. Now the Q function has expectations w. r. t. $\tilde{y}_{m i s}$, so compute them (i.e. E-step in $A 2$-EM

5. Find maximizer.

Example: $A 2=A A$ and $A 1=S A$

$$
\begin{aligned}
p_{S A}\left(y_{o b s}, y_{m i s} \mid \theta\right) & =p\left(y_{o b s} \mid y_{m i s}\right) p\left(y_{m i s} \mid \theta\right) \\
\Longrightarrow \log p_{S A}\left(y_{o b s}, y_{m i s} \mid \theta\right) & =-\frac{1}{2}\left(y_{o b s}-y_{m i s}\right)^{2}-\frac{1}{2 v}\left(y_{m i s}-\theta\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
Q_{I}\left(\theta \mid \theta^{(t)}\right) & =\mathbb{E}_{A A}\left[\mathbb{E}_{S A}\left[\log p_{S A}\left(y_{o b s}, y_{m i s} \mid \theta\right) \mid y_{o b s}, \tilde{y}_{m i s}, \theta=G_{A A}\left(\theta^{(t)}\right)\right] \mid y_{o b s}, \theta^{(t)}\right] \\
& \left.=\mathbb{E}_{A A}\left[\left.\mathbb{E}_{S A}\left[\left.-\frac{1}{2}\left(y_{m i s}-\theta\right)^{2} \right\rvert\, y_{o b s}, \tilde{y}_{m i s}, \theta=G_{A A}\left(\theta^{(t)}\right)\right] \right\rvert\, y_{o b s}, \theta^{(t)}\right]+\text { some constant (not dependent on } \theta\right)
\end{aligned}
$$

$$
\theta^{(t+1)}=\mathbb{E}_{A A}\left[\mathbb{E}_{S A}\left[y_{m i s} \mid y_{o b s}, \tilde{y}_{m i s}, G_{A A}\left(\theta^{(t)}\right)\right] \mid y_{o b s}, \theta^{(t)}\right]
$$

$$
=\mathbb{E}_{A A}\left[\tilde{y}_{m i s}+G_{A A}\left(\theta^{(t)}\right) \mid y_{o b s}, \theta^{(t)}\right]
$$

$$
=G_{A A}\left(\theta^{(t)}\right)+\mathbb{E}_{A A}\left[\tilde{y}_{m i s} \mid y_{o b s}, \theta^{(t)}\right]
$$

$$
=\frac{\theta^{(t)} v+y_{o b s}}{v+1}+\mathbb{E}_{A A}\left[\tilde{y}_{m i s} \mid y_{o b s}, \theta^{(t)}\right]
$$

For $A A$ we have:

$$
\begin{aligned}
& p\left(y_{o b s}, \tilde{y}_{m i s} \mid \theta\right) \propto \exp \left\{-\frac{1}{2}\left(y_{o b s}-\tilde{y}_{m i s}-\theta\right)^{2}-\frac{1}{2 v} \tilde{y}_{m i s}\right\} \\
\Longrightarrow & p\left(\tilde{y}_{m i s} \mid y_{o b s}, \theta\right) \propto \exp \left\{-\frac{1}{2} \tilde{y}_{m i s}^{2}\left(1+\frac{1}{v}\right)+\tilde{y}_{m i s}\left(y_{o b s}-\theta\right)\right\}
\end{aligned}
$$

and

$$
\tilde{y}_{m i s} \mid y_{o b s}, \theta^{(t)} \sim N\left(\left(1+\frac{1}{v}\right)^{-1}\left(y_{m i s}-\theta^{(t)}\right),\left(1+\frac{1}{v}\right)^{-1}\right)=N\left(\frac{v}{v+1}\left(y_{m i s}-\theta^{(t)}\right), \frac{v}{v+1}\right)
$$

So $\theta^{(t+1)}=\left(\frac{v}{v+1}\right) \theta^{(t)}+\left(\frac{1}{v+1}\right) y_{o b s}+\left(\frac{v}{v+1}\right) y_{o b s}-\left(\frac{v}{v+1}\right) \theta^{(t)}=y_{o b s}$

Notes about the interwoven EM algorithm (IEM)

- Generally requires no more computation (often less) than the two separate EM's.
- Convergence rate is generally much better than the best convergence rate of the two EM's. [Key: minimize "correlation" between the two schemes; using an SA \& AA turns out to be a great way to do this.]
- IEM preserves monotone convergence and all convergence properties of EM.

How to construct SA/AA pairs?
Hierarchical models are usually written as SA's

Example:
$y_{i} \mid \lambda_{i} \sim \operatorname{Pois}(\lambda)$
$\lambda_{i} \mid \alpha, \beta \sim \operatorname{Gamma}(\alpha, \beta)$
In this case to form $(\hat{\alpha}, \hat{\beta})$ with $y_{o b s}=\bar{y}, \bar{y}_{\text {mis }}=\bar{\lambda}, \theta=(\alpha, \beta)$ is an SA.
How to construct an AA?
Transform $\tilde{y}_{\text {mis }}=H\left(y_{m i s}, \theta\right)$ so that $\tilde{y}_{\text {mis }}$ doesn't depend on θ.
$y_{m i s} \mid \theta \sim N(\theta, v)$
$H^{-1}\left(y_{\text {mis }}, \theta\right) \Longrightarrow \tilde{y}_{\text {mis }}=\left(y_{\text {mis }}-\theta\right) / v^{1 / 2} \Longrightarrow \tilde{y}_{\text {mis }} \sim N(0,1)$
One recipe to obtain AA's for location-scale families is to recenter and rescale. What if we don't have a location-scale family? Apply CDF transformation! (trickier for multivariate settings)
Set $\tilde{y}_{\text {mis }}=F(\lambda, \alpha, \beta)$
$y_{o b s} \mid \tilde{y}_{m i s}, \alpha, \beta \sim \operatorname{Pois}\left(F^{-1}\left(\tilde{y}_{m i s}, \alpha, \beta\right)\right)$

