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November 20th, 2013

Logistics

� More guidelines on final project have been posted.

� Homework 3 will be posted this evening and is due on class next

Wednesday.

Recap

EM Last time we saw strategies to deal with “complicated” EM

applications (i.e., when the E− & or M− step are hard).

Today

Example (V known)

Sufficient augmentation (SA)
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yobs∣ymis ∼ N(ymis,1)

ymis∣θ ∼ N(θ, V )

SAEM: θ(t+1) =
θ(t) + V yobs
V + 1

, The rate of convergence:
1

V + 1

Ancillary augmentation (AA)

yobs∣ymis ∼ N(ymis,1)

ymis∣θ ∼ N(θ, V )

AAEM: θ(t+1) =
θ(t)V + yobs
V + 1

, The rate of convergence:
V

V + 1

So the two algorithms have “opposite” performance as V changes.

If V is unkonwn we can derive EM’s for the SA & AA and they have

similar performance to when V is known.

For a given problem, how do we decide whether to use the SA or AA?

Could code both and just see which converges faster.

One idea could be to ”alternate” updates according to the SA&AA, i.e.,

compute:

θ(t+0.5) =
θ(t) + V yobs
V + 1

(SA)

θ(t+1) =
θ(t+0.5)V + yobs

V + 1
(AA)

i.e., θ(t+1) =MAA(MSA(θ(t))).

Pros

Ð→ Avoids need to select one of the algorithms

Cons

Ð→ Do no better than the best of the two algorithms, no worse than the

worst of the two algorithms.

Ð→ Need to implement two algorithms.
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[ Note: computation time of thetwo algorithms may not be equal. ]

Interwoven EM (IEM)

It turns out that there is a way to “combine” two EMs into a single,

improved update that utilizes “joint information” contained in the two

EM’s.

Consider:

E-step in AA: ỹ
(t)
mis = E[ỹmis∣yobs, θ(t)]

M-step in AA: θ(t+0.5) = yobs − ỹ
(t)
mis(=

θ(t)V + yobs
V + 1

)

ymis =H(ỹmis, θ) = ỹmis + θ

Mappings betwenn SA & AA.

ymis = ỹmis + θ, ỹmis = ymis − θ

E-step in SA:

y
(t+0.5)
mis = E[E[ymis∣yobs, θ

(t+0.5), ỹmis]∣yobs, θ
(t)]

Expectation w.r.t. p(ymis∣yobs, θ(t+0.5), ỹmis) = f(ỹmis, θ(t+0.5))

y
(t+0.5)
mis = E[ỹmis + θ

(t+0.5)∣yobs, θ
(0.5)]

= θ(t+0.5) +E[ỹmis∣yobs, θ
(0.5)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E-step in AA

M-step in SA:

θ(t+1) = y
(t+0.5)
mis

= θ(t+0.5) + ỹ
(t)
mis

= yobs − ỹ
(t)
mis + ỹ

(t)
mis

Ô⇒θ(t+1) = yobs

i.e., converges in one iteration! ,
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We can formalize this as follows: Define

QI = EA2[EA1[logPA1(yobs, ymis∣θ)∣yobs, ỹmis, θ = GA2(θ
(t))]∣yobs, θ

(t)]

Then set

θ(t+1) = argmax
θ

QI(θ∣θ
(t))

Where A1 is the augmentation scheme with missing data ymis, A2 is the

augmentation scheme with missing data ỹmis.

And GA2(θ(t)) is the value from running one iteration of EM in the A2

regime.

The algorithm can be summarized as follows:

1. Run one iteration of A2-EM to obtain θ(t+0.5) = GA2(θ(t);

2. Write down Q-function of the A1-EM;

3. Third item Replace ymis with ymis =H(ỹmis, θ(t+0.5));

4. Now the Q-function has expectations w.r.t. ỹmis, so compute them

(i.e., E-step in A2-EM).

5. Find maximizer

This can be formalized using the Q-function:

QI(θ∣θ
(t)) = EAA[ESA[logPSA(yobs, ymis∣θ)∣yobs, ỹmis, θ = GAA(θ

(t))]∣yobs, θ
(t)]

Example

PSA(yobs, ymis∣θ) = P (yobs∣ymis)P (ymis∣θ)

Ô⇒ logPSA(yobs, ymis∣θ) = −
1

2
(yobs − ymis)

2 −
1

2V
(ymis − θ)

2
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QI(θ∣θ
(t)) = EAA[ESA[−

1

2V
(ymis − θ)

2∣yobs, ỹmis,

θ = GAA(θ
(t))]∣yobs, θ

(t)] + constant (not depending on θ)

Ô⇒ θ(t) = argmaxθQI(θ∣θ
(t))

= EAA[ESA[ymis∣yobs, ỹmis,GAAθ
(t)]∣yobs, θ

(t))]

= EAA[ỹmis +GAA(θ
(t))∣yobs, θ

(t))]

= GAA(θ
(t)) +EAA[ỹmiss∣yobs, θ(t)]

Ô⇒ θ(t+1) =
θ(t)V + yobs
V + 1

+EAA[ỹmiss∣yobs, θ(t)]

For AA:

P (yobs, ỹmiss∣θ) ∝ exp{−
1

2
(yobs − ỹmiss − θ)

2 −
1

2V
ỹmiss}

Ô⇒ P (yobs, ỹmiss∣θ) ∝ exp{−
1

2
ỹ2miss(1 +

1

V
) + ỹmiss(yobs − θ)}

Ô⇒ yobs, ỹmiss∣θ
(t) ∼ N((1 +

1

V
)−1(yobs − θ

(t)), (1 +
1

V
)−1)

i.e. yobs, ỹmiss∣θ
(t) ∼ N((

V

V + 1
)(yobs − θ

(t)),
V

V + 1
)

Ô⇒ E[ỹmiss∣yobs, θ
(t)] =

V

V + 1
(yobs − θ

(t))

So: θ(t+1) = (
V

V + 1
)θ(t) +

1

V + 1
yobs +

V

V + 1
yobs − (

V

V + 1
)θ(t)

= yobs ◻

Notes about IEM algorithm:

� Generally requires no more computation (and often less, when the

mapping between the two augmentations is deterministic) than the

two EMs.
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� Convergence rate is generally much better than the best convergence

rate of the two EM’s: [Key: minimize ”correlation” between the two

schemes, using an SA&AA turns out to be a great way to do this]

� IEM preserves monotone convergence and all convergence properties

of EM.

How to construct SA/AA pairs?

Hierarchical models are usually written as SA’s.

Exampls

Yi∣λi ∼ Pois(λi)

λi∣α,β ∼ Gamma(α,β)

In this case, to find the maximizer of (α,β), i.e. (α̂, β̂), with

yobs = y⃗, ymis = λ⃗, θ = (α,β). This is an SA.

How to construct an AA?

Transform ˜ymis =H−1(ymis, θ) so that ˜ymis doesn’t depend on θ.

Example

ymis∣θ ∼ N(θ, V )

H−1(ymis, θ) → ỹmis =
ymis − θ

V 1/2

→ ỹmis ∼ N(0,1)

One recipe to obtain AA’s of location-scale family is to recenter and rescale

- What if we don’t have a location-scale family?

Apply CDF transform! (for homework) gives an ancillary guaranteed, i.e.

FX(X) ∼ Unif[0,1] if X is univariate

CDF Transform
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Set ỹmiss = F (λ;α,β) ∼ Unif(0,1) where F (x;a, b) is the CDF

corresponding to parameters a and b evaluated at x.

Then

yobs∣ỹmiss, α, β ∼ Pois(F −1(ỹmiss;α,β)) where F −1 is the inverse CDF.
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