
STA 250 12/25/13

GPUs at UCD

Two servers with GPUs. Login with:

• ssh username@lipschitz.ucdavis.edu

• ssh username@pearson.ucdavis.edu

Background and History

• GPUs are specialized units for rendering high definition graphics quickly and smoothly.

• Designed to do many simple calculations in parallel.

• In recent years there has been a great deal of progress in using GPUs for calculations, not just graphics.

• CUDA (extension of C and C++) is the forefront language for programming GPUs. Other main
language is OpenCL.

About CUDA

• CUDA is a bunch of C/C++ libraries. Low-level language.

• For NVIDIA GPUs only.

• Other higher level languages exist, PyCUDA, RCUDA.

Types of Parallelism

Two main types of parallelism:

1. Task Parallelism: Simultaneously running different tasks that do not depend on other completed tasks.

2. Data parallelism: Perform the same task on multiple pieces of data.

Some Definitions

• Kernel: GPU pogram that runs on a thread grid

• Thread Hierarchy:

– Grid: a set of blocks

– Block: a set of warps

– Warp: a SIMD group of 32 threads

– Grid size * block size = total # of threads

Up to the programmer to determine the grid/block structure. Can have a large impact on efficiency.

1



Terminology

• Host: The CPU

• Device: The GPU

• Kernel: Function that runs on the device.

• Thread: Think of a series of calculations/operations

• Kernels are typically executed by lots of threads

• One kernel is executed at a time

• Threads are cheap to launch on GPUs

• Gains in efficiency come with using large number of threads to perform calculations in parallel.

Basics of CUDA

• Memory management: GPU memory must be allocated, initialized, and freed.

• Data transfer: Data required by GPU is copied from host to device.

• Kernel Launch: The kernel is launched with specified grid/block configuration.

• Result transfer: If needed, the results must be copied back from CUDA device to host.

2


