
STA 250 Lecture 18 Notes

Chuan Qin

December 2, 2013

1. Notes on Homework 4:

• Only need to write one kernel which obtains samples from a truncated normal
distribution for both Q1 and Q2.

• Your code for the kernel in Q1 has to be robust/error free or else it might cause
problem when used for Q2.

• Probit MCMC:
Yi|Zi = 1{Zi>0}

Zi|β ∼ N(xTi β, 1)

βi ∼ N(β0,Σ0)

⇒ P (β|Z, Y) ∼ Normal

⇒ P (Zi|βi, Yi) ∼ Truncated Normal

MCMC:

for (iter in (niter + burnin)){

if (use GPU){

z = rtruncnormGPU(...) # CUDA and kernel in (...)

} else{

z = rtruncnormCPU(...) # regular R/Python in (...)

}

beta = rmvnorm(...)

}

2. C/C++

• C is a very fast complied language.

• Data types need to be explicitly defined.

1

• Vectors/matrices are typically implemented using “pointers”.

• Pointers point to memory locations, from which you can look up values at those
locations.

• About homework:

– “ global void” tells the compiler that this function is a kernel and it
does not return any value.

– The samples are written into the memory locations pointed by the input
arguments, defined as pointers.

3. Truncated Normal Sampling

If
x ∼ N(µ, σ2)1{x∈(a,b)},

then
x ∼ Truncated−Normal(µ, σ2; (a, b)).

The simplest sampling method to implement is rejection sampling, which repeatedly
sample from N(µ, σ2) until the value falls in the interval (a, b):

accepted = False

numtries = 0

Specify maxtimes as the maximum number of attempts

while (! accepted and numtries < maxtimes){

numtimes = numtimes + 1

x = rnorm(mu, sigma)

if (x>=a and x<=b){

accepted = True

}

}

However, this method is quite inefficient when a is several standard deviations larger
than µ or b is several standard deviations smaller than µ. Instead, it is more advisable
to use the following rejection sampling algorithm for sampling from tail truncated
normal distribution.

Rejection Sampling

To sample from a distribution with p.d.f. f(x), if we can find another distribution
with p.d.f. g(x) such that

f(x) ≤Mg(x), ∀x,

2

then we can use g to sample from f as follows:

(i) Sample a value x∗ from g(x).

(ii) Sample U ∼ U [0, 1].

(iii) If

U ≤ f(x∗)

Mg(x∗)
,

then accept x∗. Otherwise return to (i).

Remark:

It is clear that the bigger the gap between f(x) and Mg(x), the lower the accepting
probability. Therefore, ideally, we should choose g(x) so that f(x) and Mg(x) are
“close” for all x.

Robert (2009) proposed the following algorithm for sampling from a one-sided trun-
cated normal distribution.

Rejection Sampling One-sided Truncated Normal

To sample from X ∼ N(0, 1; (µ−,∞)),

(i) Generate
z = µ− + Expo(α).

(ii) Compute

Ψ(z) =

exp

(
−(α− z)2

2

)
, if µ− < α

exp

(
−(α− z)2

2
− (µ− − α)2

2

)
, if µ− ≥ α

(iii) If U [0, 1] < Ψ(z), accept; else try again.

Optimal choice of α:

α∗ =
µ− +

√
(µ−)2 + 4

2
.

Remark:

In homework we need to sample from N(µ, σ2; (a,∞)). To do this we can sample a
value x from

N

(
0, 1;

(
a− µ
σ

,∞
))

and then use µ+ σx as our sample.

3

