
STA 250: Lecture 18 Notes

Ozan Sonmez

12/2/2013

Final Projects
-Extra Office Hours (maybe Wed or Thu)
-HW4 is due Friday (Dec 6th) at 11:59pm. HW4 and final projects will be handed in via email.

HW4-comments
-PyCUDA is more mature than RCUDA so it will be interesting to compare the performance of PyCUDA
and RCUDA
-PyCUDA currently provides more informative error explanation than RCUDA. When using RCUDA,
you will need to look up the error codes in /usr/local/cuda/include/cuda.h. this will likely be
improved in future RCUDA releases.
-For problem2, do Gibbs Sampler: successivley sampling β and the z’s

Probit MCMC

Yi|Zi = I{zi>0}

Zi|β ∼ N(X ′iβ, 1)

β ∼ N(β0,Σ0)

⇒ P (β|Z, Y) ∼ Normal

⇒ P (Zi|β, Yi) ∼ Truncated Normal

MCMC

for (iter in 1:(niter+burnin))

if (use GPU){

z=rtruncnormGPU(...) #(...) is cudo/kernel

}else{

z=rtruncnormCPU(...) #(...) is Regular R/Python

}

beta=rmvnorm(...)

Note: In practice you may want to avoid having rtruncnorm be a separate function and instead directly
call .cuda (if using RCUDA) to avoid unnecessary memory copies).
Question1: Write code to obtain samples from a truncated normal
Question2: Problem1 needs to be coded robustly to do Problem 2

C/C++

• C is a fast, compiled language

• You need to explicitly tell C about all data types

• Data types need to be explicitly defined

• Vectors/matrices do not have a natural data type in C

• Vector/matrices are typically implemented using ‘pointers’

• Pointers point to memory locations, from which you can look up values or those memory locations.

1

x → [x[0]|x[1]|x[2]|x[3]|...|x[n−1]]

HW kernel
-‘ global ’: Tell the compiler this function is a kernel (i.e., visible to both host and device)
-‘void’ : The kernel does not return anything (in R dnorm(...) return(exp(-x*x/2)) will return to
the value). In C it does not return to anything (there is no return value). Instead, the value is written
into the memory locations pointed to by the input arguments.

More code
-Need to figure out what thread you are in, i.e.,

threadIdx.x, threadIdx.y, threadIdx.z, blockIdx.x,...

-Map these into simple index: idx
-Check whether your index (idx) is < n (since we launch more than than we need, make sure to check
that for the HW)
-Initialize Random Number Generator (RNG) (for HW initialize within each thread)
-then add integers

// To sample TN(mu,sigma^2,a,b):

int rng_a // RNG seed constant

int rng_b // RNG seed constant

int rng_c // RNG seed constant

curandState rng;

curan_init(rng_a+idx*rng_b,rng_c,0,&rng);

//Then sample the truncated normal

//mu for this index is mu[idx]

//sigma for this index is sigma[idx]

//a for this index is a[idx]

//b for this index is b[idx]

//X_~ Truncated Normal (mu.i,sigma.i, [a.i,b.i])

// Rejection sampling: while(...){...}

//Sample N(mu,sigma^2)

x[idx]=mu[idx]+sigma[idx]*curand_normal(&rng);

//to obtain ~ U[0,1] use: curand_uniform(&rng)

Zi ∼ TN(µi, 1, [ai, bi])

-Add maxtries argument for safety
-Handle the corner cases via rejection sampling described in Robert’s paper.

Truncated Normal Sampling

if X ∼ N(µ, σ2)I{x∈(a,b)}, then X ∼ TruncatedNormal(µ, σ2, a, b)

accepted=False

while (!accepted and numtries<maxtries){

numtries=numtries+1

X=rnorm(mu,sigma)

If (X>a and X <b){

accepted=True

}

}

return(X)

2

if it still doesn’t work , need to use different rejection/acceptance sampling (refer to Robert’s paper)

Rejection Sampling

To sample from a distribution with pdf f(x), if we can find another distribution with pdf g(x) such
that

f(x) ≤Mg(x)

then we can use g to sample from fas follows:

• (1) Sample a value x∗ from g(x)

• (2) Sample U ∼ U(0, 1)

• (3) If U ≤ f(x∗)
Mg(x∗)

then accept x∗ else return (1).

-We need to scale f such that Mg(x) > f(x) for all x.
- Ideally f(x) and Mg(x) should be ”close” to have high acceptance rate.

From Robert 2009

To sample from X ∼ N(0, 1, µ−,∞) (lower truncated)

• (1) Generate Z = µ− + Expo(α)

• (2) Compute

Ψ(z) =

 e−
(α−z)2

2 , if µ− < α

e−
(µ−−α)2

2 e−
(α−z)2

2 , if µ− ≥ α

• (3) if U [0, 1] < Ψ(z) accept, else try again

Optimal α is

α =
µ− +

√
(µ−)2 + 4

2

We need X ∼ N(µ, σ2, a,∞). Let Z ∼ N(0, 1, µ−,∞). What is the distribution of Y = cZ + k?

cZ ∼ N(0, c2, cµ−,∞)

cZ + k ∼ N(k, c2, cµ− + k,∞)

then figure out what to choose for k, c, µ−. Suppose we have N(µ, σ2, a,∞) then select k, c, µ− such that

k = µ, c2 = σ2, a = cµ− + k, µ− =
a− µ
σ

For right truncation, we can use left truncation because it is symmetric. (use the same algorithm
and take the negative at the end).

HW4 part-g: Question will be changed for a to be −∞.(Only right truncation)
-Be careful with PyCUDA: make sure to define data types as numpy data types e.g., (np.int32 or
np.float32)

3

-Write the Kernel inside the SourceModule function (In RCUDA the kernel is written in a different file and
compiled)
- See example0 in the Lecture Code > GPU > PyCUDA directory of the course GitHub repo
- a b live on the CPU
-It will be copied to GPU via drv.In(a) and drv.In(b)

-The result will be copied back to CPU via drv.Out. Input and output arguments can use drv.InOut.

4

